# Wikipedia:Requested articles/Mathematics Information

https://en.wikipedia.org/wiki/Wikipedia:Requested_articles/Mathematics
 Add your request in the most appropriate place below. Before adding a request please: for existing articles on the same subject. If an article exists, but not at the title you expected, you can create a redirect. Check spelling and capitalization. Be sure the subject meets Wikipedia's inclusion criteria. By convention, Wikipedia article titles are not capitalized except for the first letter and proper names -- write your request as This and such theorem instead of This And Such Theorem. Every request for an article on a mathematical topic must include a reliable source where the the topic is defined, and must specify the place in the source where the topic is defined, particularly when the source is a book. Also, when adding a request, please include as much information as possible (such as webpages, articles, or other reference material) so editors can find and distinguish your request from an already-created article.

## Algorithms

• Wolf and Pate correlation (capillary tubes)
• L-PLS (extends Partial Least Squares regression to 3 connected data blocks)
• OPLS-DA (Orthogonal Projections to Latent Structures - Discriminant Analysis) (Partial Least Squares with discrete variables)

## Books

(High-speed mathematics is a book by Lester Meyers, originally published in 1947. It presents "short-cuts and time-saving methods of doing mathematical calculations".)

## Differential equations

• Please make a page on linearization of ordinary differential equations. More precisely, consider the system x dot = f(x,u,t) wherex and u are vectors. Then it is a standard result used in the theroy of control systems (in engineering disciplines) that it can be linearized as

x dot = Ax + Bu where A = partial f / partial x and B = partial / partial u. However, in the engineeiring books or web resources no proof is offered for it. Many textbooks cite the following book [*] as a reference for its proof, but unfortunately I do not have access to it. In the engineering field many researchers will benefit from its proof.

[*] H. Amann. Ordinary Differential Equations: An Introduction to Nonlinear Analysis, volume 13 of De Gruyter Studies in Mathematics. De Gruyter, Berlin - New York, 1990. —  Preceding unsigned comment added by 151.238.150.222 ( talkcontribs) 20:12, 11 October 2015‎

This is a simple application of the concept of a Total derivative. Whether there is justification for having a whole article on the specific application you have in mind I am not sure. The editor who uses the pseudonym " JamesBWatson" ( talk) 14:59, 13 October 2015 (UTC)

I have made a draft article on Quasilinearization in response to the request above. It is awaiting approval at Quasilinearization. Rob.Corless ( talk) 20:46, 31 March 2022 (UTC)

## Mathematicians

Prior to creating an article, any biographical details can be added to: Wikipedia:WikiProject Mathematics/missing mathematicians.

## Number theory

• 32760_(number) -- lowest number evenly divisible by all integers from 1 to 16; factorisation 2 * 2 * 2 * 3 * 3 * 5 * 7 * 13. [Comment: 32760 is not divisible by 16 or 11. The correct lowest number divisible by 1 through 16 is 720720.]
• 7920 (number) -- see http://www.numbergossip.com/7920 -- as far as I can see, the only unique thing about this number is that it's the order of the smallest sporadic simple group

## Topology

### Knot theory

• Chayes–McKellar–Winn theorem -
• knotscape software for knot theory
• Lamp cord trick, in topology and specifically knot theory, an observation that two certain spaces are homeomorphic, even if one of the components is knotted. The spaces are ${\displaystyle M^{3}\backslash T_{i},i=1,2}$, where ${\displaystyle M^{3}}$ is a hollow ball homeomorphic to ${\displaystyle S^{2}\times [0,1]}$ and ${\displaystyle T_{i}}$ a tube connecting the boundary components of ${\displaystyle M^{3}}$. The name comes from R. H. Bing's book "The Geometric Topology of 3-manifolds".
• Kashaev invariant, a kind of quantum invariant
• Millett unknot, a 2D representation of the unknot
• Singular braid monoid

## Uncategorized

Please try to classify these requests.

## References

1. ^ Jacobson, Nathan (1968). Structure and Representations of Jordan Algebras. American Mathematical Society Colloquium Publications. Vol. 39. American Mathematical Society. p. 287. ISBN  0-8218-7472-1.
2. ^ Narkiewicz, Władysław (2004). Elementary and analytic theory of algebraic numbers. Springer Monographs in Mathematics (3rd ed.). Berlin: Springer-Verlag. p. 254. ISBN  3-540-21902-1. Zbl  1159.11039.
3. ^ Formanek, Edward (1991). The polynomial identities and invariants of n×n matrices. Regional Conference Series in Mathematics. Vol. 78. Providence, RI: American Mathematical Society. p. 27. ISBN  0-8218-0730-7. Zbl  0714.16001.
4. ^ Kaplansky, Irving (1972). Fields and Rings. Chicago Lectures in Mathematics (2nd ed.). University Of Chicago Press. ISBN  0-226-42451-0. Zbl  1001.16500.
5. ^ Garibaldi, Skip; Petersson, Holger P. (2011). "Wild Pfister forms over Henselian fields, K-theory, and conic division algebras". J. Algebra. 327: 386–465. Zbl  1222.17009.
6. ^ Loos, Ottmar (2011). "Algebras with scalar involution revisited". J. Pure Appl. Algebra. 215: 2805–2828. Zbl  1229.14002.
7. ^ Baur, Karin; King, Alastair; Marsh, Robert J. "Dimer models and cluster categories of Grassmannians". arXiv: [ math.RT].
8. ^ Knus, Max-Albert; Merkurjev, Alexander; Rost, Markus; Tignol, Jean-Pierre (1998). The book of involutions. Colloquium Publications. Vol. 44. With a preface by J. Tits. Providence, RI: American Mathematical Society. p. 128. ISBN  0-8218-0904-0. Zbl  0955.16001.
9. ^ McCrimmon, Kevin (1977). "Axioms for inversion in Jordan algebras". J. Algebra. 47: 201–222. Zbl  0421.17013.
10. ^ a b Cite error: The named reference caen184 was invoked but never defined (see the help page).
11. ^ Racine, Michel L. (1973). The arithmetics of quadratic Jordan algebras. Memoirs of the American Mathematical Society. Vol. 136. American Mathematical Society. p. 8. ISBN  978-0-8218-1836-7. Zbl  0348.17009.
12. ^ Formanek, Edward (1991). The polynomial identities and invariants of n×n matrices. Regional Conference Series in Mathematics. Vol. 78. Providence, RI: American Mathematical Society. p. 51. ISBN  0-8218-0730-7. Zbl  0714.16001.
13. ^ Racine, Michel L. (1973). The arithmetics of quadratic Jordan algebras. Memoirs of the American Mathematical Society. Vol. 136. American Mathematical Society. p. 2. ISBN  978-0-8218-1836-7. Zbl  0348.17009.
14. ^ Schinzel, Andrzej (2000). Polynomials with special regard to reducibility. Encyclopedia of Mathematics and Its Applications. Vol. 77. Cambridge: Cambridge University Press. ISBN  0-521-66225-7. Zbl  0956.12001.
15. ^ Choie, Y.; Diamantis, N. (2006). "Rankin–Cohen brackets on higher-order modular forms". In Friedberg, Solomon (ed.). Multiple Dirichlet series, automorphic forms, and analytic number theory. Proceedings of the Bretton Woods workshop on multiple Dirichlet series, Bretton Woods, NH, USA, July 11–14, 2005. Proc. Symp. Pure Math. Vol. 75. Providence, RI: American Mathematical Society. pp. 193–201. ISBN  0-8218-3963-2. Zbl  1207.11052.
16. ^
17. ^ Montgomery, Susan (1993). Hopf algebras and their actions on rings. Expanded version of ten lectures given at the CBMS Conference on Hopf algebras and their actions on rings, which took place at DePaul University in Chicago, USA, August 10-14, 1992. Regional Conference Series in Mathematics. Vol. 82. Providence, RI: American Mathematical Society. p. 164. ISBN  978-0-8218-0738-5. Zbl  0793.16029.
18. ^ Willerton, Simon (2013-02-18). "Tight spans, Isbell completions and semi-tropical modules". arXiv:.
19. ^ Jech, Thomas (2003). Set Theory. Springer Monographs in Mathematics (Third Millennium ed.). Berlin, New York: Springer-Verlag. pp. 88–89. ISBN  978-3-540-44085-7. Zbl  1007.03002.
20. ^ Sikorski, Roman (1964). Boolean algebras (2nd ed.). Berlin-Göttingen-Heidelberg-New York: Springer-Verlag. MR  0177920. Zbl  0123.01303.
21. ^ Chabert, Jean-Luc (1979). "Anneaux de Skolem". Arch. Math. (in French). 32: 555–568. Zbl  0403.13008.
22. ^ Snaith, Victor P. (1994). Galois module structure. Fields Institute monographs. Vol. 2. American Mathematical Society. p. 41. ISBN  0-8218-7178-1.
Taylor, Martin (1984). Classgroups of group rings. LMS Lecture Notes. Vol. 91. Cambridge University Press. p. 26. ISBN  0-521-27870-8.
23. ^ Berstel, Jean; Reutenauer, Christophe (2011). Noncommutative rational series with applications. Encyclopedia of Mathematics and Its Applications. Vol. 137. Cambridge: Cambridge University Press. p. 53. ISBN  978-0-521-19022-0. Zbl  1250.68007.
24. ^ Narkiewicz, Władysław (1990). Elementary and analytic theory of numbers (Second, substantially revised and extended ed.). Springer-Verlag. p. 37. ISBN  3-540-51250-0. Zbl  0717.11045.
25. ^ Gabber, Ofer; Ramero, Lorenzo (2003). Almost ring theory. Lecture Notes in Mathematics. Vol. 1800. Berlin: Springer-Verlag. doi: 10.1007/b10047. ISBN  3-540-40594-1. MR  2004652.
Notes by Torsten Wedhorn
26. ^ Bhargava, Manjul; Ho, Wei (2013). "Coregular spaces and genus one curves". arXiv: [ math.AG].
27. ^ a b Marcolli, Matilde (2010). Feynman motives. World Scientific. ISBN  978-981-4304-48-1. Zbl  1192.14001.
28. ^ Soulé, C.; Abramovich, Dan; Burnol, J.-F.; Kramer, Jürg (1992). Lectures on Arakelov geometry. Cambridge Studies in Advanced Mathematics. Vol. 33. Joint work with H. Gillet. Cambridge: Cambridge University Press. p. 36. ISBN  0-521-47709-3. Zbl  0812.14015.
29. ^ Timashev, Dmitry A. (2011). Invariant Theory and Algebraic Transformation Groups 8. Homogeneous spaces and equivariant embeddings. Encyclopaedia of Mathematical Sciences. Vol. 138. Berlin: Springer-Verlag. ISBN  978-3-642-18398-0. Zbl  1237.14057.
30. ^ Knutson, Allen; Lam, Thomas; Speyer, David (15 Nov 2011). "Positroid Varieties: Juggling and Geometry". arXiv: [ math.AG].
31. ^ J.-Y. Welschinger, Invariants of real rational symplectic 4-manifolds and lower bounds in real enumerative geometry, Invent. Math. 162 (2005), no. 1, 195-234. Zbl  1082.14052
32. ^ Itenberg, Ilia; Mikhalkin, Grigory; Shustin, Eugenii (2007). Tropical algebraic geometry. Oberwolfach Seminars. Vol. 35. Basel: Birkhäuser. pp. 86–87. ISBN  978-3-7643-8309-1. Zbl  1162.14300.
33. ^ Consani, Caterina; Connes, Alain, eds. (2011). Noncommutative geometry, arithmetic, and related topics. Proceedings of the 21st meeting of the Japan-U.S. Mathematics Institute (JAMI) held at Johns Hopkins University, Baltimore, MD, USA, March 23–26, 2009. Baltimore, MD: Johns Hopkins University Press. ISBN  1-4214-0352-8. Zbl  1245.00040.
34. ^ Machiel van Frankenhuijsen (2014). The Riemann Hypothesis for function fields. LMS Student Texts. Vol. 80. Cambridge University Press. ISBN  978-1-107-68531-4.
35. ^ Bartolome, Boris (2014). "The Skolem-Abouzaid theorem in the singular case". arXiv: [ math.NT].
36. ^ Nisse, Mounir (2011). "Complex tropical localization, and coamoebas of complex algebraic hypersurfaces". In Gurvits, Leonid (ed.). Randomization, relaxation, and complexity in polynomial equation solving. Banff International Research Station workshop on randomization, relaxation, and complexity, Banff, Ontario, Canada, February 28–March 5, 2010. Contemporary Mathematics. Vol. 556. Providence, RI: American Mathematical Society. pp. 127–144. ISBN  978-0-8218-5228-6. Zbl  1235.14058.
37. ^ Ballico, E. (2011). "Scroll codes over curves of higher genus: Reducible and superstable vector bundles". Designs, Codes and Cryptography. 63 (3): 365. doi: 10.1007/s10623-011-9561-6.
38. ^ Sanyal, Raman; Sturmfels, Bernd; Vinzant, Cynthia (2013). "The entropic discriminant". Adv. Math. 244: 678–707. Zbl  1284.15006.
39. ^ Björner, Anders; Ziegler, Günter M. (1992). "8. Introduction to greedoids". In White, Neil (ed.). Matroid Applications. Matroid applications. Encyclopedia of Mathematics and its Applications. Vol. 40. Cambridge: Cambridge University Press. pp. 284–357. doi: 10.1017/CBO9780511662041.009. ISBN  0-521-38165-7. MR  1165537. Zbl  0772.05026.
40. ^ Park, Seong Ill; Park, So Ryoung; Song, Iickho; Suehiro, Naoki (2000). "Multiple-access interference reduction for QS-CDMA systems with a novel class of polyphase sequences". IEEE Trans. Inf. Theory. 46 (4): 1448–1458. Zbl  1006.94500.
41. ^ Ardila, Federico; Rincón, Felipe; Williams, Lauren (15 Sep 2013). "Positroids and non-crossing partitions". arXiv: [ math.CO].
42. ^ Marcolli, Matilde (2005). Arithmetic noncommutative geometry. University Lecture Series. Vol. 36. With a foreword by Yuri Manin. Providence, RI: American Mathematical Society. p. 83. ISBN  0-8218-3833-4. Zbl  1081.58005.
43. ^ Marcolli, Matilde (2005). Arithmetic noncommutative geometry. University Lecture Series. Vol. 36. With a foreword by Yuri Manin. Providence, RI: American Mathematical Society. p. 83. ISBN  0-8218-3833-4. Zbl  1081.58005.
44. ^
45. ^ *Soulé, C. (1992). Lectures on Arakelov geometry. Cambridge Studies in Advanced Mathematics. Vol. 33. with the collaboration of D. Abramovich, J.-F. Burnol and J. Kramer. Cambridge University Press. ISBN  0-521-41669-8. MR  1208731. Zbl  0812.14015.
46. ^ Mirzakhani, Maryam (2008). Ergodic theory of the earthquake flow. Int. Math. Res. Not. Vol. 2008. doi: 10.1093/imrn/rnm116. Zbl  1189.30087.
47. ^ Christian Bonatti; Lorenzo J. Díaz; Marcelo Viana (30 March 2006), Dynamics Beyond Uniform Hyperbolicity: A Global Geometric and Probabilistic Perspective, Springer Science & Business Media, p. 9, ISBN  978-3-540-26844-4
48. ^ Baake, Michael; Moody, Robert V., eds. (2000). Directions in mathematical quasicrystals. CRM Monograph Series. Vol. 13. Providence, RI: American Mathematical Society. p. 237. ISBN  0-8218-2629-8. Zbl  0955.00025.
49. ^ Walters, Peter (2000). An Introduction to Ergodic Theory. Graduate Texts in Mathematics. Vol. 79. Springer-Verlag. p. 207. ISBN  0-387-95152-0. ISSN  0072-5285.
50. ^ a b Azizov, T.Ya.; Iokhvidov, E.I.; Iokhvidov, I.S. (1983). "On the connection between the Cayley-Neumann and Potapov-Ginzburg transformations". Funkts. Anal. (in Russian). 20: 3–8. Zbl  0567.47031.
51. ^ e.g. Cwikel et al., On the fundamental lemma of interpolation theory, J. Approx. Theory 60 (1990) 70–82
52. ^ Jacobson, Nathan (1996). Finite-dimensional division algebras over fields. Berlin: Springer-Verlag. ISBN  3-540-57029-2. Zbl  0874.16002.
53. ^ a b Whaples, G. (1957). "Galois cohomology of additive polynomial and n-th power mappings of fields". Duke Math. J. 24: 143–150. doi: 10.1215/S0012-7094-57-02420-1. Zbl  0081.26702.
54. ^ McCarthy, Paul J. (1991). Algebraic extensions of fields (Corrected reprint of the 2nd ed.). New York: Dover Publications. p. 132. Zbl  0768.12001.
55. ^ Fried, Michael D.; Jarden, Moshe (2008). Field arithmetic. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Vol. 11 (3rd ed.). Springer-Verlag. p. 562. ISBN  978-3-540-77269-9. Zbl  1145.12001.
56. ^ Fried, Michael D.; Jarden, Moshe (2008). Field arithmetic. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Vol. 11 (3rd ed.). Springer-Verlag. pp. 463–464. ISBN  978-3-540-77269-9. Zbl  1145.12001.
57. ^ Leriche, Amandine (2011). "Pólya fields, Pólya groups and Pólya extensions: a question of capitulation". J. Théor. Nombres Bordx. 23: 235–249. Zbl  1282.13040.
58. ^ Lam, Tsit-Yuen (2005). Introduction to Quadratic Forms over Fields. Graduate Studies in Mathematics. Vol. 67. American Mathematical Society. p. 453. ISBN  0-8218-1095-2. MR  2104929. Zbl  1068.11023.
59. ^ Lam, Tsit-Yuen (2005). Introduction to Quadratic Forms over Fields. Graduate Studies in Mathematics. Vol. 67. American Mathematical Society. p. 463. ISBN  0-8218-1095-2. MR  2104929. Zbl  1068.11023.
60. ^ Coxeter, H.S.M.; Greitzer, S.L. (1967). Geometry Revisited. New Mathematical Library. Vol. 19. Washington, D.C.: Mathematical Association of America. p. 100. ISBN  978-0-88385-619-2. Zbl  0166.16402.
61. ^ Conway, John; Burgiel, Heidi; Goodman-Strauss, Chaim (2008). "Polystix". The Symmetries of Things. Wellesley, Massachusetts: A K Peters. p. 346-348. ISBN  978-1-56881-220-5. MR  2410150.
62. ^ Erickson, Martin J. (2014). Introduction to Combinatorics. Discrete Mathematics and Optimization. Vol. 78 (2 ed.). John Wiley & Sons. p. 134. ISBN  1118640217.
63. ^ Imre, Sandor; Gyongyosi, Laszlo (2012). Advanced Quantum Communications: An Engineering Approach. John Wiley & Sons. p. 112. ISBN  1118337433.
64. ^ Oh, Suho; Postnikov, Alex; Speyer, David E (20 Sep 2011). "Weak Separation and Plabic Graphs". arXiv: [ math.CO].
65. ^ Manjunath, Madhusudan; Sturmfels, Bernd (2013). "Monomials, binomials and Riemann-Roch". J. Algebr. Comb. 37 (4): 737–756. doi: 10.1007/s10801-012-0386-9. Zbl  1272.13017.
66. ^ Ellis-Monaghan, Joanna A.; Moffatt, Iain (2013). Graphs on Surfaces: Dualities, Polynomials, and Knots. SpringerBriefs in Mathematics. Springer-Verlag. ISBN  1461469716.
67. ^ Zhao, Xiang-Yu, Bin Huang, Ming Tang, Hai-Feng Zhang, and Duan-Bing Chen. "Identifying effective multiple spreaders by coloring complex networks." EPL (Europhysics Letters) 108, no. 6 (2015): 68005. arXiv.org preprint
68. ^ Fried, Michael D.; Jarden, Moshe (2008). Field arithmetic. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Vol. 11 (3rd ed.). Springer-Verlag. p. 613. ISBN  3-540-22811-X. Zbl  1055.12003.
69. ^ Fried, Michael D.; Jarden, Moshe (2008). Field arithmetic. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Vol. 11 (3rd ed.). Springer-Verlag. p. 352. ISBN  3-540-22811-X. Zbl  1055.12003.
70. ^ Tao, Terence (2012). Higher-order Fourier analysis. Graduate Studies in Mathematics. Vol. 142. Providence, RI: American Mathematical Society. ISBN  978-0-8218-8986-2. Zbl  1277.11010.
71. ^ a b Tao, Terence (2012). Higher-order Fourier analysis. Graduate Studies in Mathematics. Vol. 142. Providence, RI: American Mathematical Society. p. 92. ISBN  978-0-8218-8986-2. Zbl  1277.11010.
72. ^ Montgomery, Susan (1993). Hopf algebras and their actions on rings. Expanded version of ten lectures given at the CBMS Conference on Hopf algebras and their actions on rings, which took place at DePaul University in Chicago, USA, August 10-14, 1992. Regional Conference Series in Mathematics. Vol. 82. Providence, RI: American Mathematical Society. p. 207. ISBN  978-0-8218-0738-5. Zbl  0793.16029.
73. ^ Kaplansky, Irving (1972). Fields and Rings. Chicago Lectures in Mathematics (2nd ed.). University Of Chicago Press. p. 135. ISBN  0-226-42451-0. Zbl  1001.16500.
74. ^ Deligne, Pierre; Etingof, Pavel; Freed, Daniel S.; Jeffrey, Lisa C.; Kazhdan, David; Morgan, John W.; Morrison, David R.; Witten, Edward, eds. (1999). Quantum fields and strings: a course for mathematicians. Material from the Special Year on Quantum Field Theory held at the Institute for Advanced Study, Princeton, NJ, 1996–1997. Vol. 2. Providence, RI: American Mathematical Society. p. 884. ISBN  0-8218-8621-5. Zbl  0984.00503.
75. ^ Belavin, A.A. (1980). "Discrete groups and integrability of quantum systems". Funkts. Anal. Prilozh. 14 (4): 18–26. Zbl  0454.22012.
76. ^ Saha, Prasenjit (November 2009). "Interpreting the Kustaanheimo-Stiefel transform in gravitational dynamics". Monthly Notices of the Royal Astronomical Society. 400 (1): 228–231. arXiv:. doi: 10.1111/j.1365-2966.2009.15437.x.
77. ^ Joao Caramalho Domingues (2014). "The repercussion of José Anastácio da Cunha in Britain and the USA in the nineteenth century". BSHM Bulletin. 20 (1): 32–50. doi: 10.1080/17498430.2013.802111.
78. ^ Roquette, Peter (2013). "The remarkable career of Otto Grün". Contributions to the history of number theory in the 20th century. Heritage of European Mathematics. Zürich: European Mathematical Society. pp. 77–116. ISBN  978-3-03719-113-2. Zbl  1276.11001.
79. ^ Brualdi, Richard A. (2006). Combinatorial Matrix Classes,. Encyclopedia of Mathematics and its Applications. Vol. 108. Cambridge University Press. p. 401. ISBN  0-521-86565-4. ISSN  0953-4806.
80. ^ Formanek, Edward (1991). The polynomial identities and invariants of n×n matrices. Regional Conference Series in Mathematics. Vol. 78. Providence, RI: American Mathematical Society. p. 45. ISBN  0-8218-0730-7. Zbl  0714.16001.
81. ^ Guterman, Alexander E. (2008). "Rank and determinant functions for matrices over semirings". In Young, Nicholas; Choi, Yemon (eds.). Surveys in Contemporary Mathematics. London Mathematical Society Lecture Note Series. Vol. 347. Cambridge University Press. pp. 1–33. ISBN  0-521-70564-9. ISSN  0076-0552. Zbl  1181.16042.
82. ^
83. ^
84. ^ Narkiewicz, Władysław (2004). Elementary and analytic theory of algebraic numbers. Springer Monographs in Mathematics (3rd ed.). Berlin: Springer-Verlag. p. 307. ISBN  3-540-21902-1. Zbl  1159.11039.
85. ^ * Narkiewicz, Władysław (1990). Elementary and analytic theory of numbers (Second, substantially revised and extended ed.). Springer-Verlag. p. 416. ISBN  3-540-51250-0. Zbl  0717.11045.
86. ^ Narkiewicz, Władysław (2004). Elementary and analytic theory of algebraic numbers. Springer Monographs in Mathematics (3rd ed.). Berlin: Springer-Verlag. p. 123. ISBN  3-540-21902-1. Zbl  1159.11039.
87. ^ Bossert, Walter; Suzumura, Kōtarō (2010). Consistency, choice and rationality. Harvard University Press. p. 36. ISBN  0674052994.
88. ^ Ash, Robert B. (1965). Information Theory. New York: Interscience. p. 68.
89. ^ Da Prato, Giuseppe; Zabczyk, Jerzy (2014). Stochastic equations in infinite dimensions. Cambridge University Press. p. 58.
90. ^ Capon, Jack (1964). "Randon-Nikodym Derivatives of Stationary Gaussian Measures". The Annals of Mathematical Statistics: 517–531. JSTOR  2238506.
91. ^ Gantmacher, F.R. (2005) [1959]. Applications of the theory of matrices. Dover. ISBN  0-486-44554-2. Zbl  0085.01001.
92. ^ a b c Turzański, Marian (1992). "Strong sequences, binary families and Esenin-Volpin's theorem". Comment.Math.Univ.Carolinae. 33 (3): 563–569. MR  1209298. Zbl  0796.54031.
93. ^ Arhangel'Skii, A. (1996). General topology II: compactness, homologies of general spaces. Encyclopaedia of mathematical sciences. Vol. 50. Springer-Verlag. p. 59. ISBN  0-387-54695-2. Zbl  0830.00013.
94. ^ a b Arhangelʹskiĭ, A. V. (1969). "An approximation of the theory of dyadic bicompacta". Dokl. Akad. Nauk SSSR (in Russian). 184: 767–770. MR  0243485.
95. ^ Tall, Franklin D. (1976). "The density topology". Pac. J. Math. 62: 275–284. Zbl  0305.54039.
96. ^ Šunić, Zoran (2014). "Cellular automata and groups, by Tullio Ceccherini-Silberstein and Michel Coornaert (book review)". Bulletin of the American Mathematical Society. 51 (2): 361–366. doi: 10.1090/S0273-0979-2013-01425-3.