Timeline of biotechnology Information

From Wikipedia

The historical application of biotechnology throughout time is provided below in chronological order.

These discoveries, inventions and modifications are evidence of the application of biotechnology since before the common era and describe notable events in the research, development and regulation of biotechnology.

Before Common Era

Pre-20th century

20th century

21st century


8 July: Researchers report that they succeeded in using a genetically altered variant of R. sulfidophilum to produce spidroins, the main proteins in spider silk. [67]
  • 18 September – Researchers report the development of two active guide RNA-only elements that, according to their study, may enable halting or deleting gene drives introduced into populations in the wild with CRISPR-Cas9 gene editing. The paper's senior author cautions that the two neutralizing systems they demonstrated in cage trials "should not be used with a false sense of security for field-implemented gene drives". [79] [80]
10 November: Scientists show that microorganisms could be employed to mine useful elements from basalt rocks in space. [85]
25 November: The development of a biotechnology for microbial reactors capable of producing oxygen as well as hydrogen is reported. [89]
30 November: The 50-year problem of protein structure prediction is reported to be largely solved with an AI algorithm. [91]


Optical appearance of self-assembled films of sustainable packaging alternative to plastic.webp
Researchers present a bioprinting method to produce steak-like cultured meat.
  • 0 Researchers present a bioprinting method to produce steak-like cultured meat, composed of three types of bovine cell fibers. [140] [141]
  • Bioengineers report the development of a viable CRISPR-Cas gene-editing system, "CasMINI", that is about twice as compact as the commonly used Cas9 and Cas12a. [142] [143]
  • Media outlets report that the world's first cultured coffee product has been created, still awaiting regulatory approval for near-term commercialization. It was also reported that another biotechnology company produced and sold "molecular coffee" without clear details of the molecular composition or similarity to cultured coffee except having compounds that are in green coffee and that a third company is working on the development of a similar product made from extracted molecules. [144] [145] [146] Such products, for which multiple companies' R&D have acquired substantial funding, may have equal or highly similar effects, composition and taste as natural products but use less water, generate less carbon emissions, require less and relocated labor [145] and cause no deforestation. [144]
The first CRISPR-edited food, tomatoes, goes on public sale.


See also



  1. ^ a b "Highlights in the History of Biotechnology" (PDF). St Louis Science Center. Archived from the original (PDF) on 23 January 2013. Retrieved 27 December 2012.
  2. ^ "Agriculture in Ancient Greece". World History Encyclopedia. Archived from the original on 30 December 2012. Retrieved 27 December 2012.
  3. ^ "Biotechnology Timeline". Biotechnology Institute of Washington DC. Archived from the original on April 7, 2022. Retrieved 27 December 2012.
  4. ^ "1973_Boyer". Genome News Network. Archived from the original on 20 September 2020. Retrieved 19 August 2015.
  5. ^ C A Hutchison, 3rd, S Phillips, M H Edgell, S Gillam, P Jahnke and M Smith (1978). "Mutagenesis at a specific position in a DNA sequence". J Biol Chem. 253 (18): 6551–6560. doi: 10.1016/S0021-9258(19)46967-6. PMID  681366.{{ cite journal}}: CS1 maint: multiple names: authors list ( link)
  6. ^ Fingas, Jon (16 April 2019). "CRISPR gene editing has been used on humans in the US". Engadget. Archived from the original on 16 April 2019. Retrieved 16 April 2019.
  7. ^ Staff (17 April 2019). "CRISPR has been used to treat US cancer patients for the first time". MIT Technology Review. Archived from the original on 17 April 2019. Retrieved 17 April 2019.
  8. ^ Anzalone, Andrew V.; Randolph, Peyton B.; Davis, Jessie R.; Sousa, Alexander A.; Koblan, Luke W.; Levy, Jonathan M.; Chen, Peter J.; Wilson, Christopher; Newby, Gregory A.; Raguram, Aditya; Liu, David R. (21 October 2019). "Search-and-replace genome editing without double-strand breaks or donor DNA". Nature. 576 (7785): 149–157. Bibcode: 2019Natur.576..149A. doi: 10.1038/s41586-019-1711-4. PMC  6907074. PMID  31634902.
  9. ^ Gallagher, James (2019-10-21). "Prime editing: DNA tool could correct 89% of genetic defects". BBC News. Archived from the original on 2019-10-21. Retrieved 21 October 2019.
  10. ^ "Scientists Create New, More Powerful Technique To Edit Genes". NPR.org. Archived from the original on 21 October 2019. Retrieved 21 October 2019.
  11. ^ "Nanoparticle chomps away plaques that cause heart attacks". Michigan State University. 27 January 2020. Archived from the original on 29 January 2020. Retrieved 31 January 2020.
  12. ^ "Nanoparticle helps eat away deadly arterial plaque". New Atlas. 28 January 2020. Archived from the original on 1 March 2020. Retrieved 13 April 2020.
  13. ^ Flores, Alyssa M.; Hosseini-Nassab, Niloufar; Jarr, Kai-Uwe; Ye, Jianqin; Zhu, Xingjun; Wirka, Robert; Koh, Ai Leen; Tsantilas, Pavlos; Wang, Ying; Nanda, Vivek; Kojima, Yoko; Zeng, Yitian; Lotfi, Mozhgan; Sinclair, Robert; Weissman, Irving L.; Ingelsson, Erik; Smith, Bryan Ronain; Leeper, Nicholas J. (February 2020). "Pro-efferocytic nanoparticles are specifically taken up by lesional macrophages and prevent atherosclerosis". Nature Nanotechnology. 15 (2): 154–161. Bibcode: 2020NatNa..15..154F. doi: 10.1038/s41565-019-0619-3. PMC  7254969. PMID  31988506.
  14. ^ "Fundamental beliefs about atherosclerosis overturned: Complications of artery-hardening condition are number one killer worldwide". ScienceDaily. Archived from the original on 2020-06-29. Retrieved 2020-07-12.
  15. ^ "The top 10 causes of death". www.who.int. Archived from the original on 2020-06-05. Retrieved 2020-01-26.
  16. ^ "New CRISPR-based tool can probe and control several genetic circuits at once". phys.org. Archived from the original on 2 March 2020. Retrieved 8 March 2020.
  17. ^ Kempton, Hannah R.; Goudy, Laine E.; Love, Kasey S.; Qi, Lei S. (5 February 2020). "Multiple Input Sensing and Signal Integration Using a Split Cas12a System". Molecular Cell. 78 (1): 184–191.e3. doi: 10.1016/j.molcel.2020.01.016. ISSN  1097-2765. PMID  32027839.
  18. ^ AFP. "US Trial Shows 3 Cancer Patients Had Their Genomes Altered Safely by CRISPR". ScienceAlert. Archived from the original on 2020-02-08. Retrieved 2020-02-09.
  19. ^ "CRISPR-edited immune cells for fighting cancer passed a safety test". Science News. 6 February 2020. Archived from the original on 25 July 2020. Retrieved 13 July 2020.
  20. ^ "CRISPR-Edited Immune Cells Can Survive and Thrive After Infusion into Cancer Patients – PR News". www.pennmedicine.org. Archived from the original on 13 July 2020. Retrieved 13 July 2020.
  21. ^ Stadtmauer, Edward A.; Fraietta, Joseph A.; Davis, Megan M.; Cohen, Adam D.; Weber, Kristy L.; Lancaster, Eric; Mangan, Patricia A.; Kulikovskaya, Irina; Gupta, Minnal; Chen, Fang; Tian, Lifeng; Gonzalez, Vanessa E.; Xu, Jun; Jung, In-young; Melenhorst, J. Joseph; Plesa, Gabriela; Shea, Joanne; Matlawski, Tina; Cervini, Amanda; Gaymon, Avery L.; Desjardins, Stephanie; Lamontagne, Anne; Salas-Mckee, January; Fesnak, Andrew; Siegel, Donald L.; Levine, Bruce L.; Jadlowsky, Julie K.; Young, Regina M.; Chew, Anne; Hwang, Wei-Ting; Hexner, Elizabeth O.; Carreno, Beatriz M.; Nobles, Christopher L.; Bushman, Frederic D.; Parker, Kevin R.; Qi, Yanyan; Satpathy, Ansuman T.; Chang, Howard Y.; Zhao, Yangbing; Lacey, Simon F.; June, Carl H. (28 February 2020). "CRISPR-engineered T cells in patients with refractory cancer". Science. 367 (6481): eaba7365. doi: 10.1126/science.aba7365. ISSN  0036-8075. PMID  32029687. S2CID  211048335.
  22. ^ "Biomaterial discovery enables 3-D printing of tissue-like vascular structures". phys.org. Archived from the original on 6 April 2020. Retrieved 5 April 2020.
  23. ^ Wu, Yuanhao; Okesola, Babatunde O.; Xu, Jing; Korotkin, Ivan; Berardo, Alice; Corridori, Ilaria; di Brocchetti, Francesco Luigi Pellerej; Kanczler, Janos; Feng, Jingyu; Li, Weiqi; Shi, Yejiao; Farafonov, Vladimir; Wang, Yiqiang; Thompson, Rebecca F.; Titirici, Maria-Magdalena; Nerukh, Dmitry; Karabasov, Sergey; Oreffo, Richard O. C.; Carlos Rodriguez-Cabello, Jose; Vozzi, Giovanni; Azevedo, Helena S.; Pugno, Nicola M.; Wang, Wen; Mata, Alvaro (4 March 2020). "Disordered protein-graphene oxide co-assembly and supramolecular biofabrication of functional fluidic devices". Nature Communications. 11 (1): 1182. Bibcode: 2020NatCo..11.1182W. doi: 10.1038/s41467-020-14716-z. ISSN  2041-1723. PMC  7055247. PMID  32132534.
  24. ^ "Doctors use gene editing tool Crispr inside body for first time". The Guardian. 4 March 2020. Archived from the original on 12 April 2020. Retrieved 6 April 2020.
  25. ^ "Doctors use CRISPR gene editing inside a person's body for first time". NBC News. Archived from the original on 6 March 2020. Retrieved 6 April 2020.
  26. ^ "Doctors try 1st CRISPR editing in the body for blindness". AP NEWS. 4 March 2020. Archived from the original on 6 April 2020. Retrieved 6 April 2020.
  27. ^ White, Franny. "OHSU performs first-ever CRISPR gene editing within human body". OHSU News. Retrieved 12 April 2020.
  28. ^ "Researchers establish new viable CRISPR-Cas12b system for plant genome engineering". phys.org. Archived from the original on 6 April 2020. Retrieved 6 April 2020.
  29. ^ Ming, Meiling; Ren, Qiurong; Pan, Changtian; He, Yao; Zhang, Yingxiao; Liu, Shishi; Zhong, Zhaohui; Wang, Jiaheng; Malzahn, Aimee A.; Wu, Jun; Zheng, Xuelian; Zhang, Yong; Qi, Yiping (March 2020). "CRISPR–Cas12b enables efficient plant genome engineering". Nature Plants. 6 (3): 202–208. doi: 10.1038/s41477-020-0614-6. PMID  32170285. S2CID  212643374.
  30. ^ Levy, Steven. "Could Crispr Be Humanity's Next Virus Killer?". Wired. Archived from the original on 24 March 2020. Retrieved 25 March 2020.
  31. ^ "Biochemist Explains How CRISPR Can Be Used to Fight COVID-19". Amanpour & Company. Archived from the original on 30 April 2020. Retrieved 3 April 2020.
  32. ^ "Can Crispr technology attack the coronavirus? | Bioengineering". bioengineering.stanford.edu. Archived from the original on 14 July 2020. Retrieved 3 April 2020.
  33. ^ Abbott, Timothy R.; Dhamdhere, Girija; Liu, Yanxia; Lin, Xueqiu; Goudy, Laine; Zeng, Leiping; Chemparathy, Augustine; Chmura, Stephen; Heaton, Nicholas S.; Debs, Robert; Pande, Tara; Endy, Drew; Russa, Marie La; Lewis, David B.; Qi, Lei S. (14 March 2020). "Development of CRISPR as a prophylactic strategy to combat novel coronavirus and influenza". bioRxiv: 2020.03.13.991307. doi: 10.1101/2020.03.13.991307.
  34. ^ "Scientists aim gene-targeting breakthrough against COVID-19". phys.org. Archived from the original on 17 June 2020. Retrieved 13 June 2020.
  35. ^ Abbott, Timothy R.; Dhamdhere, Girija; Liu, Yanxia; Lin, Xueqiu; Goudy, Laine; Zeng, Leiping; Chemparathy, Augustine; Chmura, Stephen; Heaton, Nicholas S.; Debs, Robert; Pande, Tara; Endy, Drew; Russa, Marie F. La; Lewis, David B.; Qi, Lei S. (14 May 2020). "Development of CRISPR as an Antiviral Strategy to Combat SARS-CoV-2 and Influenza". Cell. 181 (4): 865–876.e12. doi: 10.1016/j.cell.2020.04.020. ISSN  0092-8674. PMC  7189862. PMID  32353252.
  36. ^ "New kind of CRISPR technology to target RNA, including RNA viruses like coronavirus". phys.org. Archived from the original on 5 April 2020. Retrieved 3 April 2020.
  37. ^ Wessels, Hans-Hermann; Méndez-Mancilla, Alejandro; Guo, Xinyi; Legut, Mateusz; Daniloski, Zharko; Sanjana, Neville E. (16 March 2020). "Massively parallel Cas13 screens reveal principles for guide RNA design". Nature Biotechnology. 38 (6): 722–727. doi: 10.1038/s41587-020-0456-9. PMC  7294996. PMID  32518401.
  38. ^ "Scientists can now edit multiple genome fragments at a time". phys.org. Archived from the original on 7 April 2020. Retrieved 7 April 2020.
  39. ^ Gonatopoulos-Pournatzis, Thomas; Aregger, Michael; Brown, Kevin R.; Farhangmehr, Shaghayegh; Braunschweig, Ulrich; Ward, Henry N.; Ha, Kevin C. H.; Weiss, Alexander; Billmann, Maximilian; Durbic, Tanja; Myers, Chad L.; Blencowe, Benjamin J.; Moffat, Jason (16 March 2020). "Genetic interaction mapping and exon-resolution functional genomics with a hybrid Cas9–Cas12a platform". Nature Biotechnology. 38 (5): 638–648. doi: 10.1038/s41587-020-0437-z. PMID  32249828. S2CID  212731918.
  40. ^ "Researchers achieve remote control of hormone release using magnetic nanoparticles". phys.org. Archived from the original on 24 April 2020. Retrieved 16 May 2020.
  41. ^ Rosenfeld, Dekel; Senko, Alexander W.; Moon, Junsang; Yick, Isabel; Varnavides, Georgios; Gregureć, Danijela; Koehler, Florian; Chiang, Po-Han; Christiansen, Michael G.; Maeng, Lisa Y.; Widge, Alik S.; Anikeeva, Polina (1 April 2020). "Transgene-free remote magnetothermal regulation of adrenal hormones". Science Advances. 6 (15): eaaz3734. Bibcode: 2020SciA....6.3734R. doi: 10.1126/sciadv.aaz3734. PMC  7148104. PMID  32300655.
  42. ^ "Predicting the evolution of genetic mutations". phys.org. Archived from the original on 26 April 2020. Retrieved 16 May 2020.
  43. ^ Zhou, Juannan; McCandlish, David M. (14 April 2020). "Minimum epistasis interpolation for sequence-function relationships". Nature Communications. 11 (1): 1782. Bibcode: 2020NatCo..11.1782Z. doi: 10.1038/s41467-020-15512-5. PMC  7156698. PMID  32286265.
  44. ^ "Bactericidal nanomachine: Researchers reveal the mechanisms behind a natural bacteria killer". phys.org. Archived from the original on 29 April 2020. Retrieved 17 May 2020.
  45. ^ Ge, Peng; Scholl, Dean; Prokhorov, Nikolai S.; Avaylon, Jaycob; Shneider, Mikhail M.; Browning, Christopher; Buth, Sergey A.; Plattner, Michel; Chakraborty, Urmi; Ding, Ke; Leiman, Petr G.; Miller, Jeff F.; Zhou, Z. Hong (April 2020). "Action of a minimal contractile bactericidal nanomachine". Nature. 580 (7805): 658–662. Bibcode: 2020Natur.580..658G. doi: 10.1038/s41586-020-2186-z. PMC  7513463. PMID  32350467.
  46. ^ "Scientists create tiny devices that work like the human brain". The Independent. 20 April 2020. Archived from the original on 24 April 2020. Retrieved 17 May 2020.
  47. ^ "Researchers unveil electronics that mimic the human brain in efficient learning". phys.org. Archived from the original on 28 May 2020. Retrieved 17 May 2020.
  48. ^ Fu, Tianda; Liu, Xiaomeng; Gao, Hongyan; Ward, Joy E.; Liu, Xiaorong; Yin, Bing; Wang, Zhongrui; Zhuo, Ye; Walker, David J. F.; Joshua Yang, J.; Chen, Jianhan; Lovley, Derek R.; Yao, Jun (20 April 2020). "Bioinspired bio-voltage memristors". Nature Communications. 11 (1): 1861. Bibcode: 2020NatCo..11.1861F. doi: 10.1038/s41467-020-15759-y. PMC  7171104. PMID  32313096.
  49. ^ "Sustainable light achieved in living plants". phys.org. Archived from the original on 27 May 2020. Retrieved 18 May 2020.
  50. ^ "Scientists use mushroom DNA to produce permanently-glowing plants". New Atlas. 28 April 2020. Archived from the original on 9 May 2020. Retrieved 18 May 2020.
  51. ^ "Scientists create glowing plants using mushroom genes". The Guardian. 27 April 2020. Archived from the original on 10 May 2020. Retrieved 18 May 2020.
  52. ^ Wehner, Mike (29 April 2020). "Scientists use bioluminescent mushrooms to create glow-in-the-dark plants". New York Post. Archived from the original on 24 May 2020. Retrieved 18 May 2020.
  53. ^ Woodyatt, Amy. "Scientists create glow-in-the-dark plants". CNN. Archived from the original on 20 May 2020. Retrieved 23 May 2020.
  54. ^ Mitiouchkina, Tatiana; Mishin, Alexander S.; Somermeyer, Louisa Gonzalez; Markina, Nadezhda M.; Chepurnyh, Tatiana V.; Guglya, Elena B.; Karataeva, Tatiana A.; Palkina, Kseniia A.; Shakhova, Ekaterina S.; Fakhranurova, Liliia I.; Chekova, Sofia V.; Tsarkova, Aleksandra S.; Golubev, Yaroslav V.; Negrebetsky, Vadim V.; Dolgushin, Sergey A.; Shalaev, Pavel V.; Shlykov, Dmitry; Melnik, Olesya A.; Shipunova, Victoria O.; Deyev, Sergey M.; Bubyrev, Andrey I.; Pushin, Alexander S.; Choob, Vladimir V.; Dolgov, Sergey V.; Kondrashov, Fyodor A.; Yampolsky, Ilia V.; Sarkisyan, Karen S. (27 April 2020). "Plants with genetically encoded autoluminescence". Nature Biotechnology. 38 (8): 944–946. doi: 10.1038/s41587-020-0500-9. PMC  7610436. PMID  32341562. S2CID  216559981.
  55. ^ "New technique makes thousands of semi-synthetic photosynthesis cells". New Atlas. 11 May 2020. Archived from the original on 25 May 2020. Retrieved 12 June 2020.
  56. ^ Barras, Colin (7 May 2020). "Cyber-spinach turns sunlight into sugar". Nature. doi: 10.1038/d41586-020-01396-4. PMID  32393873. S2CID  218598753.
  57. ^ "Researchers develop an artificial chloroplast". phys.org. Archived from the original on 12 June 2020. Retrieved 12 June 2020.
  58. ^ Miller, Tarryn E.; Beneyton, Thomas; Schwander, Thomas; Diehl, Christoph; Girault, Mathias; McLean, Richard; Chotel, Tanguy; Claus, Peter; Cortina, Niña Socorro; Baret, Jean-Christophe; Erb, Tobias J. (8 May 2020). "Light-powered CO2 fixation in a chloroplast mimic with natural and synthetic parts" (PDF). Science. 368 (6491): 649–654. Bibcode: 2020Sci...368..649M. doi: 10.1126/science.aaz6802. PMC  7610767. PMID  32381722. S2CID  218552008.
  59. ^ "Synthetic red blood cells mimic natural ones, and have new abilities". phys.org. Archived from the original on 13 June 2020. Retrieved 13 June 2020.
  60. ^ Guo, Jimin; Agola, Jacob Ongudi; Serda, Rita; Franco, Stefan; Lei, Qi; Wang, Lu; Minster, Joshua; Croissant, Jonas G.; Butler, Kimberly S.; Zhu, Wei; Brinker, C. Jeffrey (11 May 2020). "Biomimetic Rebuilding of Multifunctional Red Blood Cells: Modular Design Using Functional Components". ACS Nano. 14 (7): 7847–7859. doi: 10.1021/acsnano.9b08714. OSTI  1639054. PMID  32391687. S2CID  218584795.
  61. ^ Page, Michael Le. "Three people with inherited diseases successfully treated with CRISPR". New Scientist. Archived from the original on 26 June 2020. Retrieved 1 July 2020.
  62. ^ "More early data revealed from landmark CRISPR gene editing human trial". New Atlas. 17 June 2020. Archived from the original on 23 June 2020. Retrieved 1 July 2020.
  63. ^ "A Year In, 1st Patient To Get Gene Editing For Sickle Cell Disease Is Thriving". NPR.org. Archived from the original on 30 June 2020. Retrieved 1 July 2020.
  64. ^ "CRISPR Therapeutics and Vertex Announce New Clinical Data for Investigational Gene-Editing Therapy CTX001™ in Severe Hemoglobinopathies at the 25th Annual European Hematology Association (EHA) Congress | CRISPR Therapeutics". crisprtx.gcs-web.com. Archived from the original on 28 June 2020. Retrieved 1 July 2020.
  65. ^ "The powerhouses inside cells have been gene-edited for the first time". New Scientist. 8 July 2020. Archived from the original on 14 July 2020. Retrieved 12 July 2020.
  66. ^ Mok, Beverly Y.; de Moraes, Marcos H.; Zeng, Jun; Bosch, Dustin E.; Kotrys, Anna V.; Raguram, Aditya; Hsu, FoSheng; Radey, Matthew C.; Peterson, S. Brook; Mootha, Vamsi K.; Mougous, Joseph D.; Liu, David R. (July 2020). "A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing". Nature. 583 (7817): 631–637. Bibcode: 2020Natur.583..631M. doi: 10.1038/s41586-020-2477-4. ISSN  1476-4687. PMC  7381381. PMID  32641830.
  67. ^ a b "Spider silk made by photosynthetic bacteria". phys.org. Archived from the original on 7 August 2020. Retrieved 16 August 2020.
  68. ^ Foong, Choon Pin; Higuchi-Takeuchi, Mieko; Malay, Ali D.; Oktaviani, Nur Alia; Thagun, Chonprakun; Numata, Keiji (2020-07-08). "A marine photosynthetic microbial cell factory as a platform for spider silk production". Communications Biology. Springer Science and Business Media LLC. 3 (1): 357. doi: 10.1038/s42003-020-1099-6. ISSN  2399-3642. PMC  7343832. PMID  32641733. CC-BY icon.svg Text and images are available under a Creative Commons Attribution 4.0 International License Archived 2017-10-16 at the Wayback Machine.
  69. ^ "Brain benefits of exercise can be gained with a single protein". medicalxpress.com. Archived from the original on 20 August 2020. Retrieved 18 August 2020.
  70. ^ Horowitz, Alana M.; Fan, Xuelai; Bieri, Gregor; Smith, Lucas K.; Sanchez-Diaz, Cesar I.; Schroer, Adam B.; Gontier, Geraldine; Casaletto, Kaitlin B.; Kramer, Joel H.; Williams, Katherine E.; Villeda, Saul A. (10 July 2020). "Blood factors transfer beneficial effects of exercise on neurogenesis and cognition to the aged brain". Science. 369 (6500): 167–173. Bibcode: 2020Sci...369..167H. doi: 10.1126/science.aaw2622. ISSN  0036-8075. PMC  7879650. PMID  32646997. S2CID  220428681.
  71. ^ "Researchers discover 2 paths of aging and new insights on promoting healthspan". phys.org. Archived from the original on 13 August 2020. Retrieved 17 August 2020.
  72. ^ Li, Yang; Jiang, Yanfei; Paxman, Julie; o'Laughlin, Richard; Klepin, Stephen; Zhu, Yuelian; Pillus, Lorraine; Tsimring, Lev S.; Hasty, Jeff; Hao, Nan (2020). "A programmable fate decision landscape underliessingle-cell aging in yeast". Science. 369 (6501): 325–329. Bibcode: 2020Sci...369..325L. doi: 10.1126/science.aax9552. PMC  7437498. PMID  32675375.
  73. ^ "Machine learning reveals recipe for building artificial proteins". phys.org. Archived from the original on 3 August 2020. Retrieved 17 August 2020.
  74. ^ Russ, William P.; Figliuzzi, Matteo; Stocker, Christian; Barrat-Charlaix, Pierre; Socolich, Michael; Kast, Peter; Hilvert, Donald; Monasson, Remi; Cocco, Simona; Weigt, Martin; Ranganathan, Rama (2020). "An evolution-based model for designing chorismatemutase enzymes". Science. 369 (6502): 440–445. Bibcode: 2020Sci...369..440R. doi: 10.1126/science.aba3304. PMID  32703877. S2CID  220714458.
  75. ^ "Quest - Article - UPDATE: ACE-031 Clinical Trials in Duchenne MD". Muscular Dystrophy Association. 6 January 2016. Archived from the original on 21 September 2020. Retrieved 16 October 2020.
  76. ^ Attie, Kenneth M.; Borgstein, Niels G.; Yang, Yijun; Condon, Carolyn H.; Wilson, Dawn M.; Pearsall, Amelia E.; Kumar, Ravi; Willins, Debbie A.; Seehra, Jas S.; Sherman, Matthew L. (2013). "A single ascending-dose study of muscle regulator ace-031 in healthy volunteers". Muscle & Nerve. 47 (3): 416–423. doi: 10.1002/mus.23539. ISSN  1097-4598. PMID  23169607. S2CID  19956237. Retrieved 16 October 2020.
  77. ^ "'Mighty mice' stay musclebound in space, boon for astronauts". phys.org. Archived from the original on 1 October 2020. Retrieved 8 October 2020.
  78. ^ Lee, Se-Jin; Lehar, Adam; Meir, Jessica U.; Koch, Christina; Morgan, Andrew; Warren, Lara E.; Rydzik, Renata; Youngstrom, Daniel W.; Chandok, Harshpreet; George, Joshy; Gogain, Joseph; Michaud, Michael; Stoklasek, Thomas A.; Liu, Yewei; Germain-Lee, Emily L. (22 September 2020). "Targeting myostatin/activin A protects against skeletal muscle and bone loss during spaceflight". Proceedings of the National Academy of Sciences. 117 (38): 23942–23951. doi: 10.1073/pnas.2014716117. ISSN  0027-8424. PMC  7519220. PMID  32900939.
  79. ^ "Biologists create new genetic systems to neutralize gene drives". phys.org. Archived from the original on 9 October 2020. Retrieved 8 October 2020.
  80. ^ Xu, Xiang-Ru Shannon; Bulger, Emily A.; Gantz, Valentino M.; Klanseck, Carissa; Heimler, Stephanie R.; Auradkar, Ankush; Bennett, Jared B.; Miller, Lauren Ashley; Leahy, Sarah; Juste, Sara Sanz; Buchman, Anna; Akbari, Omar S.; Marshall, John M.; Bier, Ethan (18 September 2020). "Active Genetic Neutralizing Elements for Halting or Deleting Gene Drives". Molecular Cell. 80 (2): 246–262.e4. doi: 10.1016/j.molcel.2020.09.003. ISSN  1097-2765. PMID  32949493. S2CID  221806864. Archived from the original on 14 October 2020. Retrieved 8 October 2020.
  81. ^ Carrington, Damian (28 September 2020). "New super-enzyme eats plastic bottles six times faster". The Guardian. Archived from the original on 12 October 2020. Retrieved 12 October 2020.
  82. ^ "Plastic-eating enzyme 'cocktail' heralds new hope for plastic waste". phys.org. Archived from the original on 11 October 2020. Retrieved 12 October 2020.
  83. ^ Knott, Brandon C.; Erickson, Erika; Allen, Mark D.; Gado, Japheth E.; Graham, Rosie; Kearns, Fiona L.; Pardo, Isabel; Topuzlu, Ece; Anderson, Jared J.; Austin, Harry P.; Dominick, Graham; Johnson, Christopher W.; Rorrer, Nicholas A.; Szostkiewicz, Caralyn J.; Copié, Valérie; Payne, Christina M.; Woodcock, H. Lee; Donohoe, Bryon S.; Beckham, Gregg T.; McGeehan, John E. (24 September 2020). "Characterization and engineering of a two-enzyme system for plastics depolymerization". Proceedings of the National Academy of Sciences. 117 (41): 25476–25485. doi: 10.1073/pnas.2006753117. ISSN  0027-8424. PMC  7568301. PMID  32989159. CC-BY icon.svg Text and images are available under a Creative Commons Attribution 4.0 International License Archived 2017-10-16 at the Wayback Machine.
  84. ^ Wu, Katherine J.; Peltier, Elian (7 October 2020). "Nobel Prize in Chemistry Awarded to 2 Scientists for Work on Genome Editing - Emmanuelle Charpentier and Jennifer A. Doudna developed the Crispr tool, which can alter the DNA of animals, plants and microorganisms with high precision". The New York Times. Archived from the original on 8 October 2020. Retrieved 7 October 2020.
  85. ^ a b Cockell, Charles S.; Santomartino, Rosa; Finster, Kai; Waajen, Annemiek C.; Eades, Lorna J.; Moeller, Ralf; Rettberg, Petra; Fuchs, Felix M.; Van Houdt, Rob; Leys, Natalie; Coninx, Ilse; Hatton, Jason; Parmitano, Luca; Krause, Jutta; Koehler, Andrea; Caplin, Nicol; Zuijderduijn, Lobke; Mariani, Alessandro; Pellari, Stefano S.; Carubia, Fabrizio; Luciani, Giacomo; Balsamo, Michele; Zolesi, Valfredo; Nicholson, Natasha; Loudon, Claire-Marie; Doswald-Winkler, Jeannine; Herová, Magdalena; Rattenbacher, Bernd; Wadsworth, Jennifer; Craig Everroad, R.; Demets, René (10 November 2020). "Space station biomining experiment demonstrates rare earth element extraction in microgravity and Mars gravity". Nature Communications. 11 (1): 5523. Bibcode: 2020NatCo..11.5523C. doi: 10.1038/s41467-020-19276-w. ISSN  2041-1723. PMC  7656455. PMID  33173035. CC-BY icon.svg Available under CC BY 4.0 Archived 2017-10-16 at the Wayback Machine.
  86. ^ Crane, Leah. "Asteroid-munching microbes could mine materials from space rocks". New Scientist. Archived from the original on 7 December 2020. Retrieved 9 December 2020.
  87. ^ "TAU breakthrough may increase life expectancy in brain and ovarian cancers". Tel Aviv University. 18 November 2020. Archived from the original on 22 November 2020. Retrieved 23 November 2020.
  88. ^ Rosenblum, Daniel; Gutkin, Anna; Kedmi, Ranit; Ramishetti, Srinivas; Veiga, Nuphar; Jacobi, Ashley M.; Schubert, Mollie S.; Friedmann-Morvinski, Dinorah; Cohen, Zvi R.; Behlke, Mark A.; Lieberman, Judy; Peer, Dan (1 November 2020). "CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy". Science Advances. 6 (47): eabc9450. Bibcode: 2020SciA....6.9450R. doi: 10.1126/sciadv.abc9450. ISSN  2375-2548. PMC  7673804. PMID  33208369. S2CID  227068531.
  89. ^ a b "Research creates hydrogen-producing living droplets, paving way for alternative future energy source". phys.org. Archived from the original on 16 December 2020. Retrieved 9 December 2020.
  90. ^ Xu, Zhijun; Wang, Shengliang; Zhao, Chunyu; Li, Shangsong; Liu, Xiaoman; Wang, Lei; Li, Mei; Huang, Xin; Mann, Stephen (25 November 2020). "Photosynthetic hydrogen production by droplet-based microbial micro-reactors under aerobic conditions". Nature Communications. 11 (1): 5985. Bibcode: 2020NatCo..11.5985X. doi: 10.1038/s41467-020-19823-5. ISSN  2041-1723. PMC  7689460. PMID  33239636. CC-BY icon.svg Available under CC BY 4.0 Archived 2017-10-16 at the Wayback Machine.
  91. ^ a b "One of biology's biggest mysteries 'largely solved' by AI". BBC News. 30 November 2020. Archived from the original on 30 November 2020. Retrieved 30 November 2020.
  92. ^ "DeepMind AI cracks 50-year-old problem of protein folding". The Guardian. 30 November 2020. Archived from the original on 30 November 2020. Retrieved 30 November 2020.
  93. ^ "AlphaFold: a solution to a 50-year-old grand challenge in biology". DeepMind. 30 November 2020. Archived from the original on 30 November 2020. Retrieved 30 November 2020.
  94. ^ Shanker, Deena (October 22, 2019). "These $50 Chicken Nuggets Were Grown in a Lab". Bloomberg.com. Archived from the original on February 25, 2020. Retrieved February 27, 2020.
  95. ^ Corbyn, Zoë (January 19, 2020). "Out of the lab and into your frying pan: the advance of cultured meat". The Guardian. Archived from the original on February 11, 2020. Retrieved February 27, 2020.
  96. ^ Ives, Mike (2 December 2020). "Singapore Approves a Lab-Grown Meat Product, a Global First". The New York Times. Archived from the original on 22 January 2021. Retrieved 16 January 2021.
  97. ^ "Scientists build whole functioning thymus from human cells". Francis Crick Institute. 11 December 2020. Archived from the original on 14 December 2020. Retrieved 14 December 2020.
  98. ^ Campinoti, Sara; Gjinovci, Asllan; Ragazzini, Roberta; Zanieri, Luca; Ariza-McNaughton, Linda; Catucci, Marco; Boeing, Stefan; Park, Jong-Eun; Hutchinson, John C.; Muñoz-Ruiz, Miguel; Manti, Pierluigi G.; Vozza, Gianluca; Villa, Carlo E.; Phylactopoulos, Demetra-Ellie; Maurer, Constance; Testa, Giuseppe; Stauss, Hans J.; Teichmann, Sarah A.; Sebire, Neil J.; Hayday, Adrian C.; Bonnet, Dominique; Bonfanti, Paola (11 December 2020). "Reconstitution of a functional human thymus by postnatal stromal progenitor cells and natural whole-organ scaffolds". Nature Communications. 11 (1): 6372. Bibcode: 2020NatCo..11.6372C. doi: 10.1038/s41467-020-20082-7. ISSN  2041-1723. PMC  7732825. PMID  33311516. CC-BY icon.svg Available under CC BY 4.0 Archived 2017-10-16 at the Wayback Machine.
  99. ^ "Gene-editing produces tenfold increase in superbug slaying antibiotics". EurekAlert!. 12 January 2021. Archived from the original on 13 January 2021. Retrieved 13 January 2021.
  100. ^ Devine, Rebecca; McDonald, Hannah P.; Qin, Zhiwei; Arnold, Corinne J.; Noble, Katie; Chandra, Govind; Wilkinson, Barrie; Hutchings, Matthew I. (12 January 2021). "Re-wiring the regulation of the formicamycin biosynthetic gene cluster to enable the development of promising antibacterial compounds". Cell Chemical Biology. 28 (4): 515–523.e5. doi: 10.1016/j.chembiol.2020.12.011. ISSN  2451-9456. PMC  8062789. PMID  33440167.
  101. ^ "Scientists use lipid nanoparticles to precisely target gene editing to the liver". EurekAlert!. 1 March 2021. Retrieved 2 March 2021.
  102. ^ Qiu, Min; Glass, Zachary; Chen, Jinjin; Haas, Mary; Jin, Xin; Zhao, Xuewei; Rui, Xuehui; Ye, Zhongfeng; Li, Yamin; Zhang, Feng; Xu, Qiaobing (9 March 2021). "Lipid nanoparticle-mediated codelivery of Cas9 mRNA and single-guide RNA achieves liver-specific in vivo genome editing of Angptl3". Proceedings of the National Academy of Sciences. 118 (10): e2020401118. Bibcode: 2021PNAS..11820401Q. doi: 10.1073/pnas.2020401118. ISSN  0027-8424. PMC  7958351. PMID  33649229.
  103. ^ "Unique CRISPR gene therapy offers opioid-free chronic pain treatment". New Atlas. 11 March 2021. Retrieved 18 April 2021.
  104. ^ Moreno, Ana M.; Alemán, Fernando; Catroli, Glaucilene F.; Hunt, Matthew; Hu, Michael; Dailamy, Amir; Pla, Andrew; Woller, Sarah A.; Palmer, Nathan; Parekh, Udit; McDonald, Daniella; Roberts, Amanda J.; Goodwill, Vanessa; Dryden, Ian; Hevner, Robert F.; Delay, Lauriane; Santos, Gilson Gonçalves dos; Yaksh, Tony L.; Mali, Prashant (10 March 2021). "Long-lasting analgesia via targeted in situ repression of NaV1.7 in mice". Science Translational Medicine. 13 (584): eaay9056. doi: 10.1126/scitranslmed.aay9056. ISSN  1946-6234. PMC  8830379. PMID  33692134. S2CID  232170826.
  105. ^ Bowler, Jacinta (16 March 2021). "Microbes Unknown to Science Discovered on The International Space Station". ScienceAlert. Retrieved 16 March 2021.
  106. ^ Bijlani, Swati; Singh, Nitin K.; Eedara, V. V. Ramprasad; Podile, Appa Rao; Mason, Christopher E.; Wang, Clay C. C.; Venkateswaran, Kasthuri (2021). "Methylobacterium ajmalii sp. nov., Isolated From the International Space Station". Frontiers in Microbiology. 12: 639396. doi: 10.3389/fmicb.2021.639396. ISSN  1664-302X. PMC  8005752. PMID  33790880. CC-BY icon.svg Available under CC BY 4.0.
  107. ^ Lewis, Tanya. "Slovakia Offers a Lesson in How Rapid Testing Can Fight COVID". Scientific American. Retrieved 19 April 2021.
  108. ^ Pavelka, Martin; Van-Zandvoort, Kevin; Abbott, Sam; Sherratt, Katharine; Majdan, Marek; Group5, CMMID COVID-19 working; Analýz, Inštitút Zdravotných; Jarčuška, Pavol; Krajčí, Marek; Flasche, Stefan; Funk, Sebastian (23 March 2021). "The impact of population-wide rapid antigen testing on SARS-CoV-2 prevalence in Slovakia". Science. 372 (6542): 635–641. Bibcode: 2021Sci...372..635P. doi: 10.1126/science.abf9648. ISSN  0036-8075. PMC  8139426. PMID  33758017.
  109. ^ "A third of global farmland at 'high' pesticide pollution risk". phys.org. Retrieved 22 April 2021.
  110. ^ Tang, Fiona H. M.; Lenzen, Manfred; McBratney, Alexander; Maggi, Federico (April 2021). "Risk of pesticide pollution at the global scale". Nature Geoscience. 14 (4): 206–210. Bibcode: 2021NatGe..14..206T. doi: 10.1038/s41561-021-00712-5. ISSN  1752-0908.
  111. ^ "New, reversible CRISPR method can control gene expression while leaving underlying DNA sequence unchanged". phys.org. Retrieved 10 May 2021.
  112. ^ Nuñez, James K.; Chen, Jin; Pommier, Greg C.; Cogan, J. Zachery; Replogle, Joseph M.; Adriaens, Carmen; Ramadoss, Gokul N.; Shi, Quanming; Hung, King L.; Samelson, Avi J.; Pogson, Angela N.; Kim, James Y. S.; Chung, Amanda; Leonetti, Manuel D.; Chang, Howard Y.; Kampmann, Martin; Bernstein, Bradley E.; Hovestadt, Volker; Gilbert, Luke A.; Weissman, Jonathan S. (29 April 2021). "Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing". Cell. 184 (9): 2503–2519.e17. doi: 10.1016/j.cell.2021.03.025. ISSN  0092-8674. PMC  8376083. PMID  33838111.
  113. ^ Subbaraman, Nidhi (15 April 2021). "First monkey–human embryos reignite debate over hybrid animals - The chimaeras lived up to 19 days — but some scientists question the need for such research". Nature. Retrieved 16 April 2021.
  114. ^ Wells, Sarah (15 April 2021). "Researchers Generate Human-Monkey Chimeric Embryos - Don't worry, there are not human-monkey babies — yet". Inverse. Retrieved 16 April 2021.
  115. ^ Tan, Tao; et al. (15 April 2021). "Chimeric contribution of human extended pluripotent stem cells to monkey embryos ex vivo". cell. 184 (8): 2020–2032.e14. doi: 10.1016/j.cell.2021.03.020. ISSN  0092-8674. PMID  33861963. S2CID  233247345. Retrieved 16 April 2021.
  116. ^ "Malaria vaccine hailed as potential breakthrough". BBC News. April 23, 2021. Retrieved April 23, 2021.
  117. ^ Datoo, Mehreen S.; Natama, Magloire H.; Somé, Athanase; Traoré, Ousmane; Rouamba, Toussaint; Bellamy, Duncan; Yameogo, Prisca; Valia, Daniel; Tegneri, Moubarak; Ouedraogo, Florence; Soma, Rachidatou; Sawadogo, Seydou; Sorgho, Faizatou; Derra, Karim; Rouamba, Eli; Orindi, Benedict; Lopez, Fernando Ramos; Flaxman, Amy; Cappuccini, Federica; Kailath, Reshma; Elias, Sean; Mukhopadhyay, Ekta; Noe, Andres; Cairns, Matthew; Lawrie, Alison; Roberts, Rachel; Valéa, Innocent; Sorgho, Hermann; Williams, Nicola; Glenn, Gregory; Fries, Louis; Reimer, Jenny; Ewer, Katie J.; Shaligram, Umesh; Hill, Adrian V. S.; Tinto, Halidou (5 May 2021). "Efficacy of a low-dose candidate malaria vaccine, R21 in adjuvant Matrix-M, with seasonal administration to children in Burkina Faso: a randomised controlled trial". The Lancet. 397 (10287): 1809–1818. doi: 10.1016/S0140-6736(21)00943-0. ISSN  0140-6736. PMC  8121760. PMID  33964223. CC-BY icon.svg Available under CC BY 4.0.
  118. ^ "Scientists Gene-Hacked Monkeys to Fix Their Cholesterol". Futurism. Retrieved 13 June 2021.
  119. ^ Musunuru, Kiran; et al. (May 2021). "In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates". Nature. 593 (7859): 429–434. Bibcode: 2021Natur.593..429M. doi: 10.1038/s41586-021-03534-y. ISSN  1476-4687. PMID  34012082. S2CID  234790939. Retrieved 13 June 2021.
  120. ^ Zimmer, Carl (2021-05-24). "Scientists Partially Restored a Blind Man's Sight With New Gene Therapy". The New York Times. Retrieved 13 June 2021.
  121. ^ Sahel, José-Alain; Boulanger-Scemama, Elise; Pagot, Chloé; Arleo, Angelo; Galluppi, Francesco; Martel, Joseph N.; Esposti, Simona Degli; Delaux, Alexandre; de Saint Aubert, Jean-Baptiste; de Montleau, Caroline; Gutman, Emmanuel; Audo, Isabelle; Duebel, Jens; Picaud, Serge; Dalkara, Deniz; Blouin, Laure; Taiel, Magali; Roska, Botond (2021-05-24). "Partial recovery of visual function in a blind patient after optogenetic therapy". Nature Medicine. 27 (7): 1223–1229. doi: 10.1038/s41591-021-01351-4. ISSN  1546-170X. PMID  34031601.
  122. ^ "Resetting the biological clock by flipping a switch". phys.org. Retrieved 14 June 2021.
  123. ^ Kolarski, Dušan; Miró-Vinyals, Carla; Sugiyama, Akiko; Srivastava, Ashutosh; Ono, Daisuke; Nagai, Yoshiko; Iida, Mui; Itami, Kenichiro; Tama, Florence; Szymanski, Wiktor; Hirota, Tsuyoshi; Feringa, Ben L. (2021-05-26). "Reversible modulation of circadian time with chronophotopharmacology". Nature Communications. 12 (1): 3164. Bibcode: 2021NatCo..12.3164K. doi: 10.1038/s41467-021-23301-x. ISSN  2041-1723. PMC  8155176. PMID  34039965. CC-BY icon.svg Available under CC BY 4.0.
  124. ^ Baylor College of Medicine (29 May 2021). "Biologists Construct a "Periodic Table" for Cell Nuclei – And Discover Something Strange, Baffling and Unexpected". ScioTechDaily. Retrieved 29 May 2021.
  125. ^ Hoencamp, Claire; et al. (28 May 2021). "3D genomics across the tree of life reveals condensin II as a determinant of architecture type". Science. 372 (6545): 984–989. doi: 10.1126/science.abe2218. PMC  8172041. PMID  34045355.
  126. ^ "'Vegan spider silk' provides sustainable alternative to single-use plastics". phys.org. Retrieved 11 July 2021.
  127. ^ Kamada, Ayaka; Rodriguez-Garcia, Marc; Ruggeri, Francesco Simone; Shen, Yi; Levin, Aviad; Knowles, Tuomas P. J. (10 June 2021). "Controlled self-assembly of plant proteins into high-performance multifunctional nanostructured films". Nature Communications. 12 (1): 3529. Bibcode: 2021NatCo..12.3529K. doi: 10.1038/s41467-021-23813-6. ISSN  2041-1723. PMC  8192951. PMID  34112802.
  128. ^ KaiserJun. 26, Jocelyn (26 June 2021). "CRISPR injected into the blood treats a genetic disease for first time". Science | AAAS. Retrieved 11 July 2021.
  129. ^ Gillmore, Julian D.; Gane, Ed; Taubel, Jorg; Kao, Justin; Fontana, Marianna; Maitland, Michael L.; Seitzer, Jessica; O’Connell, Daniel; Walsh, Kathryn R.; Wood, Kristy; Phillips, Jonathan; Xu, Yuanxin; Amaral, Adam; Boyd, Adam P.; Cehelsky, Jeffrey E.; McKee, Mark D.; Schiermeier, Andrew; Harari, Olivier; Murphy, Andrew; Kyratsous, Christos A.; Zambrowicz, Brian; Soltys, Randy; Gutstein, David E.; Leonard, John; Sepp-Lorenzino, Laura; Lebwohl, David (26 June 2021). "CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis". New England Journal of Medicine. 385 (6): 493–502. doi: 10.1056/NEJMoa2107454. PMID  34215024. S2CID  235722446. Retrieved 11 July 2021.
  130. ^ "Face masks that can diagnose COVID-19". medicalxpress.com. Retrieved 11 July 2021.
  131. ^ Nguyen, Peter Q.; Soenksen, Luis R.; Donghia, Nina M.; Angenent-Mari, Nicolaas M.; de Puig, Helena; Huang, Ally; Lee, Rose; Slomovic, Shimyn; Galbersanini, Tommaso; Lansberry, Geoffrey; Sallum, Hani M.; Zhao, Evan M.; Niemi, James B.; Collins, James J. (28 June 2021). "Wearable materials with embedded synthetic biology sensors for biomolecule detection". Nature Biotechnology. 39 (11): 1366–1374. doi: 10.1038/s41587-021-00950-3. ISSN  1546-1696. PMID  34183860. S2CID  235673261.
  132. ^ "Growing food with air and solar power: More efficient than planting crops". phys.org. Retrieved 11 July 2021.
  133. ^ Leger, Dorian; Matassa, Silvio; Noor, Elad; Shepon, Alon; Milo, Ron; Bar-Even, Arren (29 June 2021). "Photovoltaic-driven microbial protein production can use land and sunlight more efficiently than conventional crops". Proceedings of the National Academy of Sciences. 118 (26): e2015025118. doi: 10.1073/pnas.2015025118. ISSN  0027-8424. PMC  8255800. PMID  34155098. S2CID  235595143.
  134. ^ Spary, Sara. "Cows' stomachs can break down plastic, study finds". CNN. Retrieved 14 August 2021.
  135. ^ Quartinello, Felice; Kremser, Klemens; Schoen, Herta; Tesei, Donatella; Ploszczanski, Leon; Nagler, Magdalena; Podmirseg, Sabine M.; Insam, Heribert; Piñar, Guadalupe; Sterflingler, Katja; Ribitsch, Doris; Guebitz, Georg M. (2021). "Together Is Better: The Rumen Microbial Community as Biological Toolbox for Degradation of Synthetic Polyesters". Frontiers in Bioengineering and Biotechnology. 9. doi: 10.3389/fbioe.2021.684459. ISSN  2296-4185.
  136. ^ "Scientists developing contraceptive that stops sperm in its tracks". ScienceDaily. Retrieved 21 September 2021.
  137. ^ Shrestha, Bhawana; Schaefer, Alison; Zhu, Yong; Saada, Jamal; Jacobs, Timothy M.; Chavez, Elizabeth C.; Omsted, Stuart S.; Cruz-Teran, Carlos A.; Vaca, Gabriela Baldeon; Vincent, Kathleen; Moench, Thomas R.; Lai, Samuel K. (11 August 2021). "Engineering sperm-binding IgG antibodies for the development of an effective nonhormonal female contraception". Science Translational Medicine. 13 (606). doi: 10.1126/scitranslmed.abd5219. PMC  8868023. PMID  34380769. S2CID  236979903.
  138. ^ "Probiotics help lab corals survive deadly heat stress". Science News. 13 August 2021. Retrieved 22 September 2021.
  139. ^ Santoro, Erika P.; Borges, Ricardo M.; Espinoza, Josh L.; Freire, Marcelo; Messias, Camila S. M. A.; Villela, Helena D. M.; Pereira, Leandro M.; Vilela, Caren L. S.; Rosado, João G.; Cardoso, Pedro M.; Rosado, Phillipe M.; Assis, Juliana M.; Duarte, Gustavo A. S.; Perna, Gabriela; Rosado, Alexandre S.; Macrae, Andrew; Dupont, Christopher L.; Nelson, Karen E.; Sweet, Michael J.; Voolstra, Christian R.; Peixoto, Raquel S. (August 2021). "Coral microbiome manipulation elicits metabolic and genetic restructuring to mitigate heat stress and evade mortality". Science Advances. 7 (33). Bibcode: 2021SciA....7.3088S. doi: 10.1126/sciadv.abg3088. hdl: 10754/670602. PMC  8363143. PMID  34389536.
  140. ^ "Japanese scientists produce first 3D-bioprinted, marbled Wagyu beef". New Atlas. 25 August 2021. Retrieved 21 September 2021.
  141. ^ Kang, Dong-Hee; Louis, Fiona; Liu, Hao; Shimoda, Hiroshi; Nishiyama, Yasutaka; Nozawa, Hajime; Kakitani, Makoto; Takagi, Daisuke; Kasa, Daijiro; Nagamori, Eiji; Irie, Shinji; Kitano, Shiro; Matsusaki, Michiya (24 August 2021). "Engineered whole cut meat-like tissue by the assembly of cell fibers using tendon-gel integrated bioprinting". Nature Communications. 12 (1): 5059. Bibcode: 2021NatCo..12.5059K. doi: 10.1038/s41467-021-25236-9. ISSN  2041-1723. PMC  8385070. PMID  34429413.
  142. ^ "Researchers develop an engineered 'mini' CRISPR genome editing system". phys.org. Retrieved 18 October 2021.
  143. ^ Xu, Xiaoshu; Chemparathy, Augustine; Zeng, Leiping; Kempton, Hannah R.; Shang, Stephen; Nakamura, Muneaki; Qi, Lei S. (3 September 2021). "Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing". Molecular Cell. 81 (20): 4333–4345.e4. doi: 10.1016/j.molcel.2021.08.008. ISSN  1097-2765. PMID  34480847. S2CID  237417317.
  144. ^ a b Lavars, Nick (20 September 2021). "Lab-grown coffee cuts out the beans and deforestation". New Atlas. Retrieved 18 October 2021.
  145. ^ a b "Eco-friendly, lab-grown coffee is on the way, but it comes with a catch". The Guardian. 16 October 2021. Retrieved 21 November 2021.
  146. ^ "Sustainable coffee grown in Finland – | VTT News". www.vttresearch.com. Retrieved 18 October 2021.
  147. ^ "World-first artificial synthesis of starch from CO2 outperforms nature". New Atlas. 28 September 2021. Retrieved 18 October 2021.
  148. ^ Cai, Tao; Sun, Hongbing; Qiao, Jing; Zhu, Leilei; Zhang, Fan; Zhang, Jie; Tang, Zijing; Wei, Xinlei; Yang, Jiangang; Yuan, Qianqian; Wang, Wangyin; Yang, Xue; Chu, Huanyu; Wang, Qian; You, Chun; Ma, Hongwu; Sun, Yuanxia; Li, Yin; Li, Can; Jiang, Huifeng; Wang, Qinhong; Ma, Yanhe (24 September 2021). "Cell-free chemoenzymatic starch synthesis from carbon dioxide". Science. 373 (6562): 1523–1527. Bibcode: 2021Sci...373.1523C. doi: 10.1126/science.abh4049. PMID  34554807. S2CID  237615280.
  149. ^ Boonstra, Evert; de Kleijn, Roy; Colzato, Lorenza S.; Alkemade, Anneke; Forstmann, Birte U.; Nieuwenhuis, Sander (6 October 2015). "Neurotransmitters as food supplements: the effects of GABA on brain and behavior". Frontiers in Psychology. 6: 1520. doi: 10.3389/fpsyg.2015.01520. PMC  4594160. PMID  26500584.
  150. ^ "Tomato In Japan Is First CRISPR-Edited Food In The World To Go On Sale". IFLScience. Retrieved 18 October 2021.
  151. ^ Wang, Tian; Zhang, Hongyan; Zhu, Hongliang (15 June 2019). "CRISPR technology is revolutionizing the improvement of tomato and other fruit crops". Horticulture Research. 6 (1): 77. doi: 10.1038/s41438-019-0159-x. ISSN  2052-7276. PMC  6570646. PMID  31240102.
  152. ^ Yirka, Bob. "Reprogramming heart muscle cells to repair damage from heart attacks". medicalxpress.com. Retrieved 20 October 2021.
  153. ^ Chen, Yanpu; Lüttmann, Felipe F.; Schoger, Eric; Schöler, Hans R.; Zelarayán, Laura C.; Kim, Kee-Pyo; Haigh, Jody J.; Kim, Johnny; Braun, Thomas (24 September 2021). "Reversible reprogramming of cardiomyocytes to a fetal state drives heart regeneration in mice". Science. 373 (6562): 1537–1540. Bibcode: 2021Sci...373.1537C. doi: 10.1126/science.abg5159. ISSN  0036-8075. PMID  34554778. S2CID  237617229.
  154. ^ "WHO endorses use of world's first malaria vaccine in Africa". The Guardian. 2021-10-08. Retrieved 2021-10-14.
  155. ^ "New, environmentally friendly method to extract and separate rare earth elements". Penn State. 2021-10-08. Retrieved 2021-10-14.
  156. ^ Dong, Ziye; Mattocks, Joseph A.; Deblonde, Gauthier J.-P.; Hu, Dehong; Jiao, Yongqin; Cotruvo, Joseph A.; Park, Dan M. (8 October 2021). "Bridging Hydrometallurgy and Biochemistry: A Protein-Based Process for Recovery and Separation of Rare Earth Elements". ACS Central Science. 7 (11): 1798–1808. doi: 10.1021/acscentsci.1c00724. ISSN  2374-7943. PMC  8614107. PMID  34841054.
  157. ^ "What does the first successful test of a pig-to-human kidney transplant mean?". Science News. 22 October 2021. Retrieved 15 November 2021.
  158. ^ "Progress in Xenotransplantation Opens Door to New Supply of Critically Needed Organs". NYU Langone News. Retrieved 15 November 2021.
  159. ^ "A chewing gum that could reduce SARS-CoV-2 transmission". University of Pennsylvania. Retrieved 13 December 2021.
  160. ^ Daniell, Henry; Nair, Smruti K.; Esmaeili, Nardana; Wakade, Geetanjali; Shahid, Naila; Ganesan, Prem Kumar; Islam, Md Reyazul; Shepley-McTaggart, Ariel; Feng, Sheng; Gary, Ebony N.; Ali, Ali R.; Nuth, Manunya; Cruz, Selene Nunez; Graham-Wooten, Jevon; Streatfield, Stephen J.; Montoya-Lopez, Ruben; Kaznica, Paul; Mawson, Margaret; Green, Brian J.; Ricciardi, Robert; Milone, Michael; Harty, Ronald N.; Wang, Ping; Weiner, David B.; Margulies, Kenneth B.; Collman, Ronald G. (10 November 2021). "Debulking SARS-CoV-2 in saliva using angiotensin converting enzyme 2 in chewing gum to decrease oral virus transmission and infection". Molecular Therapy. 30 (5): 1966–1978. doi: 10.1016/j.ymthe.2021.11.008. ISSN  1525-0016. PMC  8580552. PMID  34774754.
  161. ^ "Therapy used on mice may transform spinal injury treatments, say scientists". The Guardian. 11 November 2021. Retrieved 11 December 2021.
  162. ^ University. "'Dancing molecules' successfully repair severe spinal cord injuries in mice". Northwestern University. Retrieved 11 December 2021.
  163. ^ Álvarez, Z.; Kolberg-Edelbrock, A. N.; Sasselli, I. R.; Ortega, J. A.; Qiu, R.; Syrgiannis, Z.; Mirau, P. A.; Chen, F.; Chin, S. M.; Weigand, S.; Kiskinis, E.; Stupp, S. I. (12 November 2021). "Bioactive scaffolds with enhanced supramolecular motion promote recovery from spinal cord injury". Science. 374 (6569): 848–856. Bibcode: 2021Sci...374..848A. doi: 10.1126/science.abh3602. ISSN  0036-8075. PMC  8723833. PMID  34762454. S2CID  244039388.
  164. ^ "Antibiotic resistance outwitted by supercomputers". University of Portsmouth. Retrieved 13 December 2021.
  165. ^ König, Gerhard; Sokkar, Pandian; Pryk, Niclas; Heinrich, Sascha; Möller, David; Cimicata, Giuseppe; Matzov, Donna; Dietze, Pascal; Thiel, Walter; Bashan, Anat; Bandow, Julia Elisabeth; Zuegg, Johannes; Yonath, Ada; Schulz, Frank; Sanchez-Garcia, Elsa (16 November 2021). "Rational prioritization strategy allows the design of macrolide derivatives that overcome antibiotic resistance". Proceedings of the National Academy of Sciences. 118 (46): e2113632118. Bibcode: 2021PNAS..11813632K. doi: 10.1073/pnas.2113632118. ISSN  0027-8424. PMC  8609559. PMID  34750269.
  166. ^ Hathaway, Bill. "Novel Lyme vaccine shows promise". Yale University. Retrieved 13 December 2021. Compared to non-immunized guinea pigs, vaccinated animals exposed to infected ticks quickly developed redness at the tick bite site. None of the immunized animals developed Lyme disease if ticks were removed when redness developed. In contrast, about half of the control group became infected with B. burgdorferi after tick removal. When a single infected tick was attached to immunized guinea pigs and not removed, none of vaccinated animals were infected compared to 60 percent of control animals. However, protection waned in immunized guinea pigs if three ticks remained attached to the animal. Ticks in immunized animals were unable to feed aggressively and dislodged more quickly than those on guinea pigs in the control group.
  167. ^ Sajid, Andaleeb; Matias, Jaqueline; Arora, Gunjan; Kurokawa, Cheyne; DePonte, Kathleen; Tang, Xiaotian; Lynn, Geoffrey; Wu, Ming-Jie; Pal, Utpal; Strank, Norma Olivares; Pardi, Norbert; Narasimhan, Sukanya; Weissman, Drew; Fikrig, Erol (2021). "mRNA vaccination induces tick resistance and prevents transmission of the Lyme disease agent". Science Translational Medicine. 13 (620): eabj9827. doi: 10.1126/scitranslmed.abj9827. PMID  34788080. S2CID  244375227.
  168. ^ Wipulasena, Aanya; Mashal, Mujib (7 December 2021). "Sri Lanka's Plunge Into Organic Farming Brings Disaster". The New York Times. Retrieved 13 December 2021.
  169. ^ "Sri Lanka ends farm chemical ban as organic drive fails". phys.org. Retrieved 13 December 2021.
  170. ^ "Team Builds First Living Robots That Can Reproduce". November 29, 2021. Retrieved December 1, 2021.
  171. ^ Kriegman, Sam; Blackiston, Douglas; Levin, Michael; Bongard, Josh (7 December 2021). "Kinematic self-replication in reconfigurable organisms". Proceedings of the National Academy of Sciences. 118 (49): e2112672118. Bibcode: 2021PNAS..11812672K. doi: 10.1073/pnas.2112672118. ISSN  0027-8424. PMC  8670470. PMID  34845026. S2CID  244769761.
  172. ^ "Scientists claim big advance in using DNA to store data". bbc.co.uk. 2 December 2021. Retrieved 3 December 2021.
  173. ^ "Stem cell-based treatment produces insulin in patients with Type 1 diabetes". news.ubc.ca. 2 December 2021. Retrieved 6 December 2021.
  174. ^ Ramzy, Adam; Thompson, David M.; Ward-Hartstonge, Kirsten A.; Ivison, Sabine; Cook, Laura; Garcia, Rosa V.; Loyal, Jackson; Kim, Peter T. W.; Warnock, Garth L.; Levings, Megan K.; Kieffer, Timothy J. (2 December 2021). "Implanted pluripotent stem-cell-derived pancreatic endoderm cells secrete glucose-responsive C-peptide in patients with type 1 diabetes". Cell Stem Cell. 28 (12): 2047–2061.e5. doi: 10.1016/j.stem.2021.10.003. ISSN  1934-5909. PMID  34861146. S2CID  244855649.
  175. ^ Yirka, Bob. "A mass of human brain cells in a petri dish has been taught to play Pong". medicalxpress.com. Retrieved 16 January 2022.
  176. ^ Kagan, Brett J.; Kitchen, Andy C.; Tran, Nhi T.; Parker, Bradyn J.; Bhat, Anjali; Rollo, Ben; Razi, Adeel; Friston, Karl J. (3 December 2021). "In vitro neurons learn and exhibit sentience when embodied in a simulated game-world": 2021.12.02.471005. doi: 10.1101/2021.12.02.471005. S2CID  244883160. {{ cite journal}}: Cite journal requires |journal= ( help)
  177. ^ "Japanese scientists develop glowing masks to detect coronavirus". Kyodo News+. Retrieved 16 January 2022.
  178. ^ Dicorato, Allessandra. "New prime editing system inserts entire genes in human cells". Broad Institute of MIT. Retrieved 16 January 2022.
  179. ^ Anzalone, Andrew V.; Gao, Xin D.; Podracky, Christopher J.; Nelson, Andrew T.; Koblan, Luke W.; Raguram, Aditya; Levy, Jonathan M.; Mercer, Jaron A. M.; Liu, David R. (9 December 2021). "Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing". Nature Biotechnology. 40 (5): 731–740. doi: 10.1038/s41587-021-01133-w. ISSN  1546-1696. PMC  9117393. PMID  34887556. S2CID  245012407.
  180. ^ "Experimental MRNA HIV Vaccine Safe, Shows Promise In Animals - ScienceMag". 9 December 2021. Retrieved 16 January 2022.
  181. ^ Zhang Peng, Elisabeth Narayanan et al. (December 2021). "A multiclade env–gag VLP mRNA vaccine elicits tier-2 HIV-1-neutralizing antibodies and reduces the risk of heterologous SHIV infection in macaques". Nature Medicine. 27 (12): 2234–2245. doi: 10.1038/s41591-021-01574-5. ISSN  1546-170X. PMID  34887575. S2CID  245116317.{{ cite journal}}: CS1 maint: uses authors parameter ( link)
  182. ^ "Japanese scientists develop vaccine to eliminate cells behind aging". Japan Times. 12 December 2021. Retrieved 12 December 2021.
  183. ^ "Senolytic vaccination improves normal and pathological age-related phenotypes and increases lifespan in progeroid mice". Nature Aging. 10 December 2021. Retrieved 12 December 2021.
  184. ^ Morens, David M.; Taubenberger, Jeffery K.; Fauci, Anthony S. (15 December 2021). "Universal Coronavirus Vaccines — An Urgent Need". New England Journal of Medicine. 386 (4): 297–299. doi: 10.1056/NEJMp2118468. PMID  34910863. S2CID  245219817.
  185. ^ "Chemists use DNA to build the world's tiniest antenna". University of Montreal. Retrieved 19 January 2022.
  186. ^ Harroun, Scott G.; Lauzon, Dominic; Ebert, Maximilian C. C. J. C.; Desrosiers, Arnaud; Wang, Xiaomeng; Vallée-Bélisle, Alexis (January 2022). "Monitoring protein conformational changes using fluorescent nanoantennas". Nature Methods. 19 (1): 71–80. doi: 10.1038/s41592-021-01355-5. ISSN  1548-7105. PMID  34969985. S2CID  245593311.
  187. ^ "Japan embraces CRISPR-edited fish". Nature Biotechnology. 40 (1): 10. 1 January 2022. doi: 10.1038/s41587-021-01197-8. PMID  34969964. S2CID  245593283. Retrieved 17 January 2022.
  188. ^ "Startup hopes genome-edited pufferfish will be a hit in 2022". The Japan Times. 5 January 2022. Retrieved 17 January 2022.
  189. ^ "Scientists vacuumed animal DNA out of thin air for the first time". Science News. 18 January 2022. Retrieved 29 January 2022.
  190. ^ Clare, Elizabeth L.; Economou, Chloe K.; Bennett, Frances J.; Dyer, Caitlin E.; Adams, Katherine; McRobie, Benjamin; Drinkwater, Rosie; Littlefair, Joanne E. (7 February 2022). "Measuring biodiversity from DNA in the air". Current Biology. 32 (3): 693–700.e5. doi: 10.1016/j.cub.2021.11.064. ISSN  0960-9822. PMID  34995488. S2CID  245772825.
  191. ^ Lynggaard, Christina; Bertelsen, Mads Frost; Jensen, Casper V.; Johnson, Matthew S.; Frøslev, Tobias Guldberg; Olsen, Morten Tange; Bohmann, Kristine (7 February 2022). "Airborne environmental DNA for terrestrial vertebrate community monitoring". Current Biology. 32 (3): 701–707.e5. doi: 10.1016/j.cub.2021.12.014. ISSN  0960-9822. PMC  8837273. PMID  34995490.
  192. ^ "University of Maryland School of Medicine Faculty Scientists and Clinicians Perform Historic First Successful Transplant of Porcine Heart into Adult Human with End-Stage Heart Disease". University of Maryland Medical Center. 10 January 2022. Archived from the original on 10 January 2022. Retrieved 11 January 2022.
  193. ^ "Man gets genetically-modified pig heart in world-first transplant". BBC News. 10 January 2022. Archived from the original on 17 January 2022. Retrieved 11 January 2022.
  194. ^ "Fastest DNA sequencing technique helps undiagnosed patients find answers in mere hours". Stanford. 12 January 2022. Archived from the original on 22 January 2022. Retrieved 23 January 2022.
  195. ^ Gorzynski, John E.; Goenka, Sneha D.; Shafin, Kishwar; Jensen, Tanner D.; Fisk, Dianna G.; Grove, Megan E.; Spiteri, Elizabeth; Pesout, Trevor; Monlong, Jean; Baid, Gunjan; Bernstein, Jonathan A.; Ceresnak, Scott; Chang, Pi-Chuan; Christle, Jeffrey W.; Chubb, Henry; Dalton, Karen P.; Dunn, Kyla; Garalde, Daniel R.; Guillory, Joseph; Knowles, Joshua W.; Kolesnikov, Alexey; Ma, Michael; Moscarello, Tia; Nattestad, Maria; Perez, Marco; Ruzhnikov, Maura R. Z.; Samadi, Mehrzad; Setia, Ankit; Wright, Chris; Wusthoff, Courtney J.; Xiong, Katherine; Zhu, Tong; Jain, Miten; Sedlazeck, Fritz J.; Carroll, Andrew; Paten, Benedict; Ashley, Euan A. (12 January 2022). "Ultrarapid Nanopore Genome Sequencing in a Critical Care Setting". New England Journal of Medicine. 386 (7): 700–702. doi: 10.1056/NEJMc2112090. PMID  35020984. S2CID  245907257.
  196. ^ "Phage therapies for superbug infections are being tested in Belgium". New Scientist. Retrieved 14 February 2022.
  197. ^ Eskenazi, Anaïs; Lood, Cédric; Wubbolts, Julia; Hites, Maya; Balarjishvili, Nana; Leshkasheli, Lika; Askilashvili, Lia; Kvachadze, Leila; van Noort, Vera; Wagemans, Jeroen; Jayankura, Marc; Chanishvili, Nina; de Boer, Mark; Nibbering, Peter; Kutateladze, Mzia; Lavigne, Rob; Merabishvili, Maya; Pirnay, Jean-Paul (18 January 2022). "Combination of pre-adapted bacteriophage therapy and antibiotics for treatment of fracture-related infection due to pandrug-resistant Klebsiella pneumoniae". Nature Communications. 13 (1): 302. Bibcode: 2022NatCo..13..302E. doi: 10.1038/s41467-021-27656-z. ISSN  2041-1723. PMC  8766457. PMID  35042848.
  198. ^ "Mit Viren gegen Bakterien - Bakteriophagen-Therapie als Hoffnung gegen multiresistente Keime". Deutschlandfunk (in German). Retrieved 14 February 2022.
  199. ^ Yirka, Bob. "Using a bacteriophage to successfully treat a patient infected with a drug-resistant bacteria". medicalxpress.com. Retrieved 14 February 2022.
  200. ^ Fuller, Carl W.; Padayatti, Pius S.; Abderrahim, Hadi; Adamiak, Lisa; Alagar, Nolan; Ananthapadmanabhan, Nagaraj; Baek, Jihye; Chinni, Sarat; Choi, Chulmin; Delaney, Kevin J.; Dubielzig, Rich; Frkanec, Julie; Garcia, Chris; Gardner, Calvin; Gebhardt, Daniel; Geiser, Tim; Gutierrez, Zachariah; Hall, Drew A.; Hodges, Andrew P.; Hou, Guangyuan; Jain, Sonal; Jones, Teresa; Lobaton, Raymond; Majzik, Zsolt; Marte, Allen; Mohan, Prateek; Mola, Paul; Mudondo, Paul; Mullinix, James; Nguyen, Thuan; Ollinger, Frederick; Orr, Sarah; Ouyang, Yuxuan; Pan, Paul; Park, Namseok; Porras, David; Prabhu, Keshav; Reese, Cassandra; Ruel, Travers; Sauerbrey, Trevor; Sawyer, Jaymie R.; Sinha, Prem; Tu, Jacky; Venkatesh, A. G.; VijayKumar, Sushmitha; Zheng, Le; Jin, Sungho; Tour, James M.; Church, George M.; Mola, Paul W.; Merriman, Barry (1 February 2022). "Molecular electronics sensors on a scalable semiconductor chip: A platform for single-molecule measurement of binding kinetics and enzyme activity". Proceedings of the National Academy of Sciences. 119 (5). Bibcode: 2022PNAS..11912812F. doi: 10.1073/pnas.2112812119. ISSN  0027-8424. PMC  8812571. PMID  35074874.
  201. ^ "Scientists regrow frog's lost leg". EurekAlert!. 26 January 2022. Archived from the original on 27 January 2022. Retrieved 27 January 2022.
  202. ^ Murugan, Nirosha J.; Vigran, Hannah J.; Miller, Kelsie A.; Golding, Annie; Pham, Quang L.; Sperry, Megan M.; Rasmussen-Ivey, Cody; Kane, Anna W.; Kaplan, David L.; Levin, Michael (January 2022). "Acute multidrug delivery via a wearable bioreactor facilitates long-term limb regeneration and functional recovery in adult Xenopus laevis". Science Advances. 8 (4): eabj2164. Bibcode: 2022SciA....8.2164M. doi: 10.1126/sciadv.abj2164. PMC  8791464. PMID  35080969. S2CID  246296571.
  203. ^ "Detecting novel SARS-CoV-2 variants in New York City wastewater". University of Missouri. Retrieved 10 March 2022.
  204. ^ Smyth, Davida S.; Trujillo, Monica; Gregory, Devon A.; Cheung, Kristen; Gao, Anna; Graham, Maddie; Guan, Yue; Guldenpfennig, Caitlyn; Hoxie, Irene; Kannoly, Sherin; Kubota, Nanami; Lyddon, Terri D.; Markman, Michelle; Rushford, Clayton; San, Kaung Myat; Sompanya, Geena; Spagnolo, Fabrizio; Suarez, Reinier; Teixeiro, Emma; Daniels, Mark; Johnson, Marc C.; Dennehy, John J. (3 February 2022). "Tracking cryptic SARS-CoV-2 lineages detected in NYC wastewater". Nature Communications. 13 (1): 635. Bibcode: 2022NatCo..13..635S. doi: 10.1038/s41467-022-28246-3. ISSN  2041-1723. PMC  8813986. PMID  35115523.
  205. ^ "Paralysed man with severed spine walks thanks to implant". BBC News. 7 February 2022. Retrieved 10 March 2022.
  206. ^ Rowald, Andreas; Komi, Salif; Demesmaeker, Robin; Baaklini, Edeny; Hernandez-Charpak, Sergio Daniel; Paoles, Edoardo; Montanaro, Hazael; Cassara, Antonino; Becce, Fabio; Lloyd, Bryn; Newton, Taylor; Ravier, Jimmy; Kinany, Nawal; D’Ercole, Marina; Paley, Aurélie; Hankov, Nicolas; Varescon, Camille; McCracken, Laura; Vat, Molywan; Caban, Miroslav; Watrin, Anne; Jacquet, Charlotte; Bole-Feysot, Léa; Harte, Cathal; Lorach, Henri; Galvez, Andrea; Tschopp, Manon; Herrmann, Natacha; Wacker, Moïra; Geernaert, Lionel; Fodor, Isabelle; Radevich, Valentin; Van Den Keybus, Katrien; Eberle, Grégoire; Pralong, Etienne; Roulet, Maxime; Ledoux, Jean-Baptiste; Fornari, Eleonora; Mandija, Stefano; Mattera, Loan; Martuzzi, Roberto; Nazarian, Bruno; Benkler, Stefan; Callegari, Simone; Greiner, Nathan; Fuhrer, Benjamin; Froeling, Martijn; Buse, Nik; Denison, Tim; Buschman, Rik; Wende, Christian; Ganty, Damien; Bakker, Jurriaan; Delattre, Vincent; Lambert, Hendrik; Minassian, Karen; van den Berg, Cornelis A. T.; Kavounoudias, Anne; Micera, Silvestro; Van De Ville, Dimitri; Barraud, Quentin; Kurt, Erkan; Kuster, Niels; Neufeld, Esra; Capogrosso, Marco; Asboth, Leonie; Wagner, Fabien B.; Bloch, Jocelyne; Courtine, Grégoire (February 2022). "Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis". Nature Medicine. 28 (2): 260–271. doi: 10.1038/s41591-021-01663-5. ISSN  1546-170X. PMID  35132264. S2CID  246651655.
  207. ^ "In world-first, researchers engineer human spinal cord implants for treating paralysis". Tel-Aviv University. Retrieved 10 March 2022.
  208. ^ "Engineered spinal cord implants restore movement to paralysed mice". Physics World. 23 February 2022. Retrieved 10 March 2022.
  209. ^ Wertheim, Lior; Edri, Reuven; Goldshmit, Yona; Kagan, Tomer; Noor, Nadav; Ruban, Angela; Shapira, Assaf; Gat‐Viks, Irit; Assaf, Yaniv; Dvir, Tal (7 February 2022). "Regenerating the Injured Spinal Cord at the Chronic Phase by Engineered iPSCs‐Derived 3D Neuronal Networks". Advanced Science. 9 (11): 2105694. doi: 10.1002/advs.202105694. PMC  9008789. PMID  35128819.
  210. ^ "DNA computer could tell you if your drinking water is contaminated". New Scientist. Retrieved 16 March 2022.
  211. ^ Jung, Jaeyoung K.; Archuleta, Chloé M.; Alam, Khalid K.; Lucks, Julius B. (17 February 2022). "Programming cell-free biosensors with DNA strand displacement circuits". Nature Chemical Biology. 18 (4): 385–393. doi: 10.1038/s41589-021-00962-9. ISSN  1552-4469. PMC  8964419. PMID  35177837.
  212. ^ "Comprehensive Cancer Treatment Technique Developed by IBS and UNIST". Businesskorea. 24 February 2022. Retrieved 25 February 2022.
  213. ^ "Scientists develop a new platform technology for personalized cancer therapy". EurekAlert!. 21 February 2022. Retrieved 25 February 2022.
  214. ^ Kwon, Taejoon; Ra, Jae Sun; Lee, Soyoung; Baek, In-Joon; Khim, Keon Woo; Lee, Eun A; Song, Eun Kyung; Otarbayev, Daniyar; Jung, Woojae; Park, Yong Hwan; Wie, Minwoo; Bae, Juyoung; Cheng, Himchan; Park, Jun Hong; Kim, Namwoo; Seo, Yuri; Yun, Seongmin; Kim, Ha Eun; Moon, Hyo Eun; Paek, Sun Ha; Park, Tae Joo; Park, Young Un; Rhee, Hwanseok; Choi, Jang Hyun; Cho, Seung Woo; Myung, Kyungjae (March 2022). "Precision targeting tumor cells using cancer-specific InDel mutations with CRISPR-Cas9". Proceedings of the National Academy of Sciences. 119 (9): e2103532119. doi: 10.1073/pnas.2103532119. PMC 8892319. PMID  35217600.
  215. ^ "Tiny 'skyscrapers' help bacteria convert sunlight into electricity". University of Cambridge. Retrieved 19 April 2022.
  216. ^ Chen, Xiaolong; Lawrence, Joshua M.; Wey, Laura T.; Schertel, Lukas; Jing, Qingshen; Vignolini, Silvia; Howe, Christopher J.; Kar-Narayan, Sohini; Zhang, Jenny Z. (7 March 2022). "3D-printed hierarchical pillar array electrodes for high-performance semi-artificial photosynthesis". Nature Materials. 21 (7): 811–818. Bibcode: 2022NatMa..21..811C. doi: 10.1038/s41563-022-01205-5. ISSN  1476-4660. PMID  35256790. S2CID  247255146.
  217. ^ "Rice and maize yields boosted up to 10 per cent by CRISPR gene editing". New Scientist. Retrieved 19 April 2022.
  218. ^ Chen, Wenkang; Chen, Lu; Zhang, Xuan; Yang, Ning; Guo, Jianghua; Wang, Min; Ji, Shenghui; Zhao, Xiangyu; Yin, Pengfei; Cai, Lichun; Xu, Jing; Zhang, Lili; Han, Yingjia; Xiao, Yingni; Xu, Gen; Wang, Yuebin; Wang, Shuhui; Wu, Sheng; Yang, Fang; Jackson, David; Cheng, Jinkui; Chen, Saihua; Sun, Chuanqing; Qin, Feng; Tian, Feng; Fernie, Alisdair R.; Li, Jiansheng; Yan, Jianbing; Yang, Xiaohong (25 March 2022). "Convergent selection of a WD40 protein that enhances grain yield in maize and rice". Science. 375 (6587): eabg7985. doi: 10.1126/science.abg7985. PMID  35324310. S2CID  247677363.
  219. ^ "Gap-free human genome sequence completed for first time". BBC News. 2022-04-01. Retrieved 2022-04-03.
  220. ^ Sergey Nurk, etc (2022). "The complete sequence of a human genome". Science. 376 (6588): 44–53. Bibcode: 2022Sci...376...44N. bioRxiv  10.1101/2021.05.26.445798. doi: 10.1126/science.abj6987. PMC  9186530. PMID  35357919. S2CID  247854936.{{ cite journal}}: CS1 maint: uses authors parameter ( link)
  221. ^ "Gene-edited tomatoes could soon be sold in England". BBC News. 24 May 2022. Retrieved 29 May 2022.
  222. ^ "Gene-edited tomatoes could be a new source of vitamin D". John Innes Centre. 23 May 2022. Retrieved 29 May 2022.
  223. ^ Li, Jie; Scarano, Aurelia; Gonzalez, Nestor Mora; D’Orso, Fabio; Yue, Yajuan; Nemeth, Krisztian; Saalbach, Gerhard; Hill, Lionel; de Oliveira Martins, Carlo; Moran, Rolando; Santino, Angelo; Martin, Cathie (June 2022). "Biofortified tomatoes provide a new route to vitamin D sufficiency". Nature Plants. 8 (6): 611–616. doi: 10.1038/s41477-022-01154-6. ISSN  2055-0278. PMC  9213236. PMID  35606499. S2CID  249014331.
  224. ^ Brahambhatt, Rupendra. "Science Scientists can now grow wood in a lab without cutting a single tree". Interesting Engineering. Retrieved 23 June 2022.
  225. ^ Beckwith, Ashley L.; Borenstein, Jeffrey T.; Velásquez-García, Luis F. (1 April 2022). "Physical, mechanical, and microstructural characterization of novel, 3D-printed, tunable, lab-grown plant materials generated from Zinnia elegans cell cultures". Materials Today. 54: 27–41. doi: 10.1016/j.mattod.2022.02.012. ISSN  1369-7021. S2CID  247300299.
  226. ^ Williams, Sarah. "Neuroscientists expand CRISPR toolkit with new, compact Cas7-11 enzyme". Massachusetts Institute of Technology. Retrieved 22 June 2022.
  227. ^ Kato, Kazuki; Zhou, Wenyuan; Okazaki, Sae; Isayama, Yukari; Nishizawa, Tomohiro; Gootenberg, Jonathan S.; Abudayyeh, Omar O.; Nishimasu, Hiroshi (May 2022). "Structure and engineering of the type III-E CRISPR-Cas7-11 effector complex". Cell. 185 (13): 2324–2337.e16. doi: 10.1016/j.cell.2022.05.003. PMID  35643083. S2CID  249103058.
  228. ^ Özcan, Ahsen; Krajeski, Rohan; Ioannidi, Eleonora; Lee, Brennan; Gardner, Apolonia; Makarova, Kira S.; Koonin, Eugene V.; Abudayyeh, Omar O.; Gootenberg, Jonathan S. (September 2021). "Programmable RNA targeting with the single-protein CRISPR effector Cas7-11". Nature. 597 (7878): 720–725. Bibcode: 2021Natur.597..720O. doi: 10.1038/s41586-021-03886-5. ISSN  1476-4687. PMID  34489594. S2CID  237432753.
  229. ^ "Tiny robotic crab is smallest-ever remote-controlled walking robot". Northwestern University. 25 May 2022. Retrieved 27 May 2022.
  230. ^ Han, Mengdi; Guo, Xiaogang; Chen, Xuexian; Liang, Cunman; Zhao, Hangbo; Zhang, Qihui; Bai, Wubin; Zhang, Fan; Wei, Heming; Wu, Changsheng; Cui, Qinghong; Yao, Shenglian; Sun, Bohan; Yang, Yiyuan; Yang, Quansan; Ma, Yuhang; Xue, Zhaoguo; Kwak, Jean Won; Jin, Tianqi; Tu, Qing; Song, Enming; Tian, Ziao; Mei, Yongfeng; Fang, Daining; Zhang, Haixia; Huang, Yonggang; Zhang, Yihui; Rogers, John A. (25 May 2022). "Submillimeter-scale multimaterial terrestrial robots". Science Robotics. 7 (66): eabn0602. doi: 10.1126/scirobotics.abn0602. ISSN  2470-9476. PMID  35613299. S2CID  249064902.
  231. ^ "Transplant success: Liver survives out of body for days". BBC News. 31 May 2022. Retrieved 24 June 2022.
  232. ^ Clavien, Pierre-Alain; Dutkowski, Philipp; Mueller, Matteo; Eshmuminov, Dilmurodjon; Bautista Borrego, Lucia; Weber, Achim; Muellhaupt, Beat; Sousa Da Silva, Richard X.; Burg, Brian R.; Rudolf von Rohr, Philipp; Schuler, Martin J.; Becker, Dustin; Hefti, Max; Tibbitt, Mark W. (31 May 2022). "Transplantation of a human liver following 3 days of ex situ normothermic preservation". Nature Biotechnology: 1–7. doi: 10.1038/s41587-022-01354-7. ISSN  1546-1696. PMID  35641829. S2CID  249234907.
  233. ^ "New cryoprotectant chemicals could preserve organs without ice damage". New Atlas. 22 June 2022. Retrieved 24 June 2022.
  234. ^ Bryant, Saffron J.; Awad, Miyah N.; Elbourne, Aaron; Christofferson, Andrew J.; Martin, Andrew V.; Meftahi, Nastaran; Drummond, Calum J.; Greaves, Tamar L.; Bryant, Gary (22 June 2022). "Deep eutectic solvents as cryoprotective agents for mammalian cells". Journal of Materials Chemistry B. 10 (24): 4546–4560. doi: 10.1039/D2TB00573E. ISSN  2050-7518. PMID  35670530.
  235. ^ "A Multicenter, Single Arm, Prospective, Open-Label, Staged Study of the Safety and Efficacy of the AuriNovo Construct for Auricular Reconstruction in Subjects With Unilateral Microtia". clinicaltrials.gov. 15 October 2021. Retrieved 19 July 2022.
  236. ^ Rabin, Roni Caryn (2 June 2022). "Doctors Transplant Ear of Human Cells, Made by 3-D Printer". The New York Times. Retrieved 19 July 2022.
  237. ^ "Scientists grew living human skin around a robotic finger". Science News. 9 June 2022. Retrieved 20 July 2022.
  238. ^ Kawai, Michio; Nie, Minghao; Oda, Haruka; Morimoto, Yuya; Takeuchi, Shoji (6 July 2022). "Living skin on a robot". Matter. 5 (7): 2190–2208. doi: 10.1016/j.matt.2022.05.019. ISSN  2590-2393.
  239. ^ Reynolds, Matt. "Scientists Are Trying to Grow Crops in the Dark". Wired. Retrieved 23 July 2022.
  240. ^ Hann, Elizabeth C.; Overa, Sean; Harland-Dunaway, Marcus; Narvaez, Andrés F.; Le, Dang N.; Orozco-Cárdenas, Martha L.; Jiao, Feng; Jinkerson, Robert E. (June 2022). "A hybrid inorganic–biological artificial photosynthesis system for energy-efficient food production". Nature Food. 3 (6): 461–471. doi: 10.1038/s43016-022-00530-x. ISSN  2662-1355. S2CID  250004816.
  241. ^ "Scientists harness light therapy to target and kill cancer cells in world first". The Guardian. 17 June 2022. Retrieved 21 June 2022.
  242. ^ Mączyńska, Justyna; Raes, Florian; Da Pieve, Chiara; Turnock, Stephen; Boult, Jessica K. R.; Hoebart, Julia; Niedbala, Marcin; Robinson, Simon P.; Harrington, Kevin J.; Kaspera, Wojciech; Kramer-Marek, Gabriela (21 January 2022). "Triggering anti-GBM immune response with EGFR-mediated photoimmunotherapy". BMC Medicine. 20 (1): 16. doi: 10.1186/s12916-021-02213-z. ISSN  1741-7015. PMC  8780306. PMID  35057796.
  243. ^ "New COVID-19 boosters could contain bits of the omicron variant". Science News. 30 June 2022. Retrieved 19 July 2022.