# Mathematics and fiber arts Information

https://en.wikipedia.org/wiki/Mathematics_and_fiber_arts
A Möbius strip scarf made from crochet.

Ideas from mathematics have been used as inspiration for fiber arts including quilt making, knitting, cross-stitch, crochet, embroidery and weaving. A wide range of mathematical concepts have been used as inspiration including topology, graph theory, number theory and algebra. Some techniques such as counted-thread embroidery are naturally geometrical; other kinds of textile provide a ready means for the colorful physical expression of mathematical concepts.

## Quilting

The IEEE Spectrum has organized a number of competitions on quilt block design, and several books have been published on the subject. Notable quiltmakers include Diana Venters and Elaine Ellison, who have written a book on the subject Mathematical Quilts: No Sewing Required. Examples of mathematical ideas used in the book as the basis of a quilt include the golden rectangle, conic sections, Leonardo da Vinci's Claw, the Koch curve, the Clifford torus, San Gaku, Mascheroni's cardioid, Pythagorean triples, spidrons, and the six trigonometric functions. [1]

## Knitting and crochet

Knitted mathematical objects include the Platonic solids, Klein bottles and Boy's surface. The Lorenz manifold and the hyperbolic plane have been crafted using crochet. [2] [3] Knitted and crocheted tori have also been constructed depicting toroidal embeddings of the complete graph K7 and of the Heawood graph. [4] The crocheting of hyperbolic planes has been popularized by the Institute For Figuring; a book by Daina Taimina on the subject, Crocheting Adventures with Hyperbolic Planes, won the 2009 Bookseller/Diagram Prize for Oddest Title of the Year. [5]

## Embroidery

Embroidery techniques such as counted-thread embroidery [6] including cross-stitch and some canvas work methods such as Bargello make use of the natural pixels of the weave, lending themselves to geometric designs. [7] [8]

## Weaving

Ada Dietz (1882 – 1950) was an American weaver best known for her 1949 monograph Algebraic Expressions in Handwoven Textiles, which defines weaving patterns based on the expansion of multivariate polynomials. [9]

J. C. P. Miller ( 1970) used the Rule 90 cellular automaton to design tapestries depicting both trees and abstract patterns of triangles. [10]

## Spinning

Margaret Greig was a mathematician who articulated the mathematics of worsted spinning. [11]

## Fashion design

The silk scarves from DMCK Designs' 2013 collection are all based on Douglas McKenna's space-filling curve patterns. [12] The designs are either generalized Peano curves, or based on a new space-filling construction technique. [13] [14]

The Issey Miyake Fall-Winter 2010–2011 ready-to-wear collection designs from a collaboration between fashion designer Dai Fujiwara and mathematician William Thurston. The designs were inspired by Thurston's geometrization conjecture, the statement that every 3-manifold can be decomposed into pieces with one of eight different uniform geometries, a proof of which had been sketched in 2003 by Grigori Perelman as part of his proof of the Poincaré conjecture. [15]

## References

1. ^ Ellison, Elaine; Venters, Diana (1999). Mathematical Quilts: No Sewing Required. Key Curriculum. ISBN  1-55953-317-X..
2. ^ Henderson, David; Taimina, Daina (2001), "Crocheting the hyperbolic plane" (PDF), Mathematical Intelligencer, 23 (2): 17–28, doi: 10.1007/BF03026623, S2CID  120271314}.
3. ^ Osinga, Hinke M.; Krauskopf, Bernd (2004), "Crocheting the Lorenz manifold", Mathematical Intelligencer, 26 (4): 25–37, doi: 10.1007/BF02985416, S2CID  119728638.
4. ^ belcastro, sarah-marie; Yackel, Carolyn (2009), "The seven-colored torus: mathematically interesting and nontrivial to construct", in Pegg, Ed, Jr.; Schoen, Alan H.; Rodgers, Tom (eds.), Homage to a Pied Puzzler, AK Peters, pp. 25–32.
5. ^ Bloxham, Andy (March 26, 2010), "Crocheting Adventures with Hyperbolic Planes wins oddest book title award", The Telegraph.
6. ^ Gillow, John, and Bryan Sentance. World Textiles, Little, Brown, 1999.
7. ^ Snook, Barbara. Florentine Embroidery. Scribner, Second edition 1967.
8. ^ Williams, Elsa S. Bargello: Florentine Canvas Work. Van Nostrand Reinhold, 1967.
9. ^ Dietz, Ada K. (1949), Algebraic Expressions in Handwoven Textiles (PDF), Louisville, Kentucky: The Little Loomhouse, archived from the original (PDF) on 2016-02-22, retrieved 2007-09-27
10. ^ Miller, J. C. P. (1970), "Periodic forests of stunted trees", Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 266 (1172): 63–111, Bibcode: 1970RSPTA.266...63M, doi: 10.1098/rsta.1970.0003, JSTOR  73779, S2CID  123330469
11. ^ Catharine M. C. Haines (2001), , ABC-CLIO, p.  118, ISBN  9781576070901
12. ^ "Space-Filling Curves". DMCK. Retrieved 15 May 2015.
13. ^ McKenna, Douglas (24 July 2007). "The 7 Curve, Carpets, Quilts, and Other Asymmetric, Square-Filling, Threaded Tile Designs". Bridges Donostia: Mathematics, Music, Art, Architecture, Culture. The Bridges Organization. Retrieved 15 May 2015.
14. ^ McKenna, Douglas (28 July 2008). "Designing Symmetric Peano Curve Tiling Patterns with Escher-esque Foreground/Background Ambiguity" (PDF). Bridges Leeuwarden: Mathematics, Music, Art, Architecture, Culture. The Bridges Organization. Retrieved 15 May 2015.
15. ^ Barchfield, Jenny (March 5, 2010), Fashion and Advanced Mathematics Meet at Miyake, ABC News.