# List of unsolved problems in mathematics Information

https://en.wikipedia.org/wiki/List_of_unsolved_problems_in_mathematics

Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations. Some problems belong to more than one discipline and are studied using techniques from different areas. Prizes are often awarded for the solution to a long-standing problem, and some lists of unsolved problems, such as the Millennium Prize Problems, receive considerable attention.

This list is a composite of notable unsolved problems mentioned in previously published lists, including but not limited to lists considered authoritative. Although this list may never be comprehensive, the problems listed here vary widely in both difficulty and importance.

## Lists of unsolved problems in mathematics

Various mathematicians and organizations have published and promoted lists of unsolved mathematical problems. In some cases, the lists have been associated with prizes for the discoverers of solutions.

List Number of
problems
Number unsolved
or incompletely solved
Proposed by Proposed
in
Hilbert's problems [1] 23 15 David Hilbert 1900
Landau's problems [2] 4 4 Edmund Landau 1912
Taniyama's problems [3] 36 - Yutaka Taniyama 1955
Thurston's 24 questions [4] [5] 24 - William Thurston 1982
Smale's problems 18 14 Stephen Smale 1998
Millennium Prize Problems 7 6 [6] Clay Mathematics Institute 2000
Simon problems 15 <12 [7] [8] Barry Simon 2000
Unsolved Problems on Mathematics for the 21st Century [9] 22 - Jair Minoro Abe, Shotaro Tanaka 2001
DARPA's math challenges [10] [11] 23 - DARPA 2007
The Riemann zeta function, subject of the celebrated and influential unsolved problem known as the Riemann hypothesis

### Millennium Prize Problems

Of the original seven Millennium Prize Problems listed by the Clay Mathematics Institute in 2000, six remain unsolved to date: [6]

The seventh problem, the Poincaré conjecture, was solved by Grigori Perelman in 2003. [12] However, a generalization called the smooth four-dimensional Poincaré conjecture—that is, whether a four-dimensional topological sphere can have two or more inequivalent smooth structures—is unsolved. [13]

## Unsolved problems

### Algebra

In the Bloch sphere representation of a qubit, a SIC-POVM forms a regular tetrahedron. Zauner conjectured that analogous structures exist in complex Hilbert spaces of all finite dimensions.

#### Notebook problems

• The Dniester Notebook ( Russian: Днестровская тетрадъ) lists several hundred unsolved problems in algebra, particularly ring theory and modulus theory. [15]
• The Erlagol Notebook ( Russian: Эрлаголъская тетрадъ) lists unsolved problems in algebra and model theory. [16]

### Analysis

The area of the blue region converges to the Euler–Mascheroni constant, which may or may not be a rational number.

### Combinatorics

• The 1/3–2/3 conjecture – does every finite partially ordered set that is not totally ordered contain two elements x and y such that the probability that x appears before y in a random linear extension is between 1/3 and 2/3? [24]
• Problems in Latin squares – open questions concerning Latin squares
• The lonely runner conjecture – if ${\displaystyle k+1}$ runners with pairwise distinct speeds run round a track of unit length, will every runner be "lonely" (that is, be at least a distance ${\displaystyle 1/(k+1)}$ from each other runner) at some time? [25]
• The sunflower conjecture: can the number of ${\displaystyle k}$ size sets required for the existence of a sunflower of ${\displaystyle r}$ sets be bounded by an exponential function in ${\displaystyle k}$ for every fixed ${\displaystyle r>2}$?
• No-three-in-line problem – how many points can be placed in the ${\displaystyle n\times n}$ grid so that no three of them lie on a line?
• Frankl's union-closed sets conjecture – for any family of sets closed under sums there exists an element (of the underlying space) belonging to half or more of the sets [26]

### Dynamical systems

A detail of the Mandelbrot set. It is not known whether the Mandelbrot set is locally connected or not.

### Geometry

#### Algebraic geometry

• Are infinite sequences of flips possible in dimensions greater than 3?
• Resolution of singularities in characteristic ${\displaystyle p}$

#### Covering and packing

• Borsuk's problem on upper and lower bounds for the number of smaller-diameter subsets needed to cover a bounded n-dimensional set.
• The covering problem of Rado: if the union of finitely many axis-parallel squares has unit area, how small can the largest area covered by a disjoint subset of squares be? [40]
• The Erdős–Oler conjecture: when ${\displaystyle n}$ is a triangular number, packing ${\displaystyle n-1}$ circles in an equilateral triangle requires a triangle of the same size as packing ${\displaystyle n}$ circles [41]
• The kissing number problem for dimensions other than 1, 2, 3, 4, 8 and 24 [42]
• Reinhardt's conjecture: the smoothed octagon has the lowest maximum packing density of all centrally-symmetric convex plane sets [43]
• Sphere packing problems, including the density of the densest packing in dimensions other than 1, 2, 3, 8 and 24, and its asymptotic behavior for high dimensions.
• Square packing in a square: what is the asymptotic growth rate of wasted space? [44]
• Ulam's packing conjecture about the identity of the worst-packing convex solid [45]

#### Discrete geometry

In three dimensions, the kissing number is 12, because 12 non-overlapping unit spheres can be put into contact with a central unit sphere. (Here, the centers of outer spheres form the vertices of a regular icosahedron.) Kissing numbers are only known exactly in dimensions 1, 2, 3, 4, 8 and 24.
• Finding matching upper and lower bounds for k-sets and halving lines [56]
• Tripod packing: [57] how many tripods can have their apexes packed into a given cube?

### Graph theory

#### Graph coloring and labeling

An instance of the Erdős–Faber–Lovász conjecture: a graph formed from four cliques of four vertices each, any two of which intersect in a single vertex, can be four-colored.

### Group theory

The free Burnside group ${\displaystyle B(2,3)}$ is finite; in its Cayley graph, shown here, each of its 27 elements is represented by a vertex. The question of which other groups ${\displaystyle B(m,n)}$ are finite remains open.

#### Notebook problems

• The Kourovka Notebook is a collection of unsolved problems in group theory, first published in 1965 and updated many times since. [125]

### Model theory and formal languages

• The Cherlin–Zilber conjecture: A simple group whose first-order theory is stable in ${\displaystyle \aleph _{0}}$ is a simple algebraic group over an algebraically closed field.
• Generalized star height problem: can all regular languages be expressed using generalized regular expressions with limited nesting depths of Kleene stars?
• For which number fields does Hilbert's tenth problem hold?
• Kueker's conjecture [126]
• The main gap conjecture, e.g. for uncountable first order theories, for AECs, and for ${\displaystyle \aleph _{1}}$-saturated models of a countable theory. [127]
• Shelah's categoricity conjecture for ${\displaystyle L_{\omega _{1},\omega }}$: If a sentence is categorical above the Hanf number then it is categorical in all cardinals above the Hanf number. [127]
• Shelah's eventual categoricity conjecture: For every cardinal ${\displaystyle \lambda }$ there exists a cardinal ${\displaystyle \mu (\lambda )}$ such that if an AEC K with LS(K)<= ${\displaystyle \lambda }$ is categorical in a cardinal above ${\displaystyle \mu (\lambda )}$ then it is categorical in all cardinals above ${\displaystyle \mu (\lambda )}$. [127] [128]
• The stable field conjecture: every infinite field with a stable first-order theory is separably closed.
• The stable forking conjecture for simple theories [129]
• Tarski's exponential function problem: is the theory of the real numbers with the exponential function decidable?
• The universality problem for C-free graphs: For which finite sets C of graphs does the class of C-free countable graphs have a universal member under strong embeddings? [130]
• The universality spectrum problem: Is there a first-order theory whose universality spectrum is minimum? [131]
• Vaught conjecture: the number of countable models of a first-order complete theory in a countable language is either finite, ${\displaystyle \aleph _{0}}$, or ${\displaystyle 2^{\aleph _{0}}}$.
• Assume K is the class of models of a countable first order theory omitting countably many types. If K has a model of cardinality ${\displaystyle \aleph _{\omega _{1}}}$ does it have a model of cardinality continuum? [132]
• Do the Henson graphs have the finite model property?
• Does a finitely presented homogeneous structure for a finite relational language have finitely many reducts?
• Does there exist an o-minimal first order theory with a trans-exponential (rapid growth) function?
• If the class of atomic models of a complete first order theory is categorical in the ${\displaystyle \aleph _{n}}$, is it categorical in every cardinal? [133] [134]
• Is every infinite, minimal field of characteristic zero algebraically closed? (Here, "minimal" means that every definable subset of the structure is finite or co-finite.)
• Is the Borel monadic theory of the real order (BMTO) decidable? Is the monadic theory of well-ordering (MTWO) consistently decidable? [135]
• Is the theory of the field of Laurent series over ${\displaystyle \mathbb {Z} _{p}}$ decidable? of the field of polynomials over ${\displaystyle \mathbb {C} }$?
• Is there a logic L which satisfies both the Beth property and Δ-interpolation, is compact but does not satisfy the interpolation property? [136]
• Determine the structure of Keisler's order. [137] [138]

### Number theory

#### General

6 is a perfect number because it is the sum of its proper positive divisors, 1, 2 and 3. It is not known how many perfect numbers there are, nor if any of them are odd.

• Beal's conjecture: for all integral solutions to ${\displaystyle A^{x}+B^{y}=C^{z}}$ where ${\displaystyle x,y,z>2}$, all three numbers ${\displaystyle A,B,C}$ must share some prime factor.
• Erdős conjecture on arithmetic progressions that if the sum of the reciprocals of the members of a set of positive integers diverges, then the set contains arbitrarily long arithmetic progressions.
• Erdős–Turán conjecture on additive bases: if ${\displaystyle B}$ is an additive basis of order ${\displaystyle 2}$, then the number of ways that positive integers ${\displaystyle n}$ can be expressed as the sum of two numbers in ${\displaystyle B}$ must tend to infinity as ${\displaystyle n}$ tends to infinity.
• Fermat–Catalan conjecture: there are finitely many distinct solutions ${\displaystyle (a^{m},b^{n},c^{k})}$ to the equation ${\displaystyle a^{m}+b^{n}=c^{k}}$ with ${\displaystyle a,b,c}$ being positive coprime integers and ${\displaystyle m,n,k}$ being positive integers satisfying ${\displaystyle 1/m+1/n+1/k<1}$.
• Gilbreath's conjecture on consecutive applications of the unsigned forward difference operator to the sequence of prime numbers.
• Goldbach's conjecture: every even natural number greater than ${\displaystyle 2}$ is the sum of two prime numbers.
• Lander, Parkin, and Selfridge conjecture: if the sum of ${\displaystyle m}$ ${\displaystyle k}$-th powers of positive integers is equal to a different sum of ${\displaystyle n}$ ${\displaystyle k}$-th powers of positive integers, then ${\displaystyle m+n\geq k}$.
• Lemoine's conjecture: all odd integers greater than ${\displaystyle 5}$ can be represented as the sum of an odd prime number and an even semiprime.
• Minimum overlap problem of estimating the minimum possible maximum number of times a number appears in the termwise difference of two equally large sets partitioning the set ${\displaystyle \{1,\ldots ,2n\}}$
• Pollock's conjectures
• Skolem problem: can an algorithm determine if a constant-recursive sequence contains a zero?
• The values of g(k) and G(k) in Waring's problem

#### Algebraic number theory

• Characterize all algebraic number fields that have some power basis.

#### Prime numbers

Goldbach's conjecture states that all even integers greater than 2 can be written as the sum of two primes. Here this is illustrated for the even integers from 4 to 28.
• Agoh–Giuga conjecture on the Bernoulli numbers that ${\displaystyle p}$ is prime if and only if ${\displaystyle pB_{p-1}\equiv -1{\pmod {p}}}$
• Artin's conjecture on primitive roots that if an integer is neither a perfect square nor ${\displaystyle -1}$, then it is a primitive root modulo infinitely many prime numbers ${\displaystyle p}$
• Brocard's conjecture: there are always at least ${\displaystyle 4}$ prime numbers between consecutive squares of prime numbers, aside from ${\displaystyle 2^{2}}$ and ${\displaystyle 3^{2}}$.
• Bunyakovsky conjecture: if an integer-coefficient polynomial ${\displaystyle f}$ has a positive leading coefficient, is irreducible over the integers, and has no common factors over all ${\displaystyle f(x)}$ where ${\displaystyle x}$ is a positive integer, then ${\displaystyle f(x)}$ is prime infinitely often.
• Catalan's Mersenne conjecture: some Catalan–Mersenne number is composite and thus all Catalan–Mersenne numbers are composite after some point.
• Dickson's conjecture: for a finite set of linear forms ${\displaystyle a_{1}+b_{1}n,\ldots ,a_{k}+b_{k}n}$ with each ${\displaystyle b_{i}\geq 1}$, there are infinitely many ${\displaystyle n}$ for which all forms are prime, unless there is some congruence condition preventing it.
• Dubner's conjecture: every number greater than ${\displaystyle 2408}$ is the sum of two primes which both have twins.
• Elliott–Halberstam conjecture on the distribution of prime numbers in arithmetic progressions.
• Erdős–Mollin–Walsh conjecture: no three consecutive numbers are all powerful.
• Feit–Thompson conjecture: for all distinct prime numbers ${\displaystyle p}$ and ${\displaystyle q}$, ${\displaystyle (p^{q}-1)/(p-1)}$ does not divide ${\displaystyle (q^{p}-1)/(q-1)}$
• Fortune's conjecture that no Fortunate number is composite.
• The Gaussian moat problem: is it possible to find an infinite sequence of distinct Gaussian prime numbers such that the difference between consecutive numbers in the sequence is bounded?
• Gillies' conjecture on the distribution of prime divisors of Mersenne numbers.
• Goldbach conjecture: all even natural numbers greater than ${\displaystyle 2}$ are the sum of two prime numbers.
• Landau's problems
• Problems associated to Linnik's theorem
• New Mersenne conjecture: for any odd natural number ${\displaystyle p}$, if any two of the three conditions ${\displaystyle p=2^{k}\pm 1}$ or ${\displaystyle p=4^{k}\pm 3}$, ${\displaystyle 2^{p}-1}$ is prime, and ${\displaystyle (2^{p}+1)/3}$ is prime are true, then the third condition is true.
• Polignac's conjecture: for all positive even numbers ${\displaystyle n}$, there are infinitely many prime gaps of size ${\displaystyle n}$.
• Schinzel's hypothesis H that for every finite collection ${\displaystyle \{f_{1},\ldots ,f_{k}\}}$ of nonconstant irreducible polynomials over the integers with positive leading coefficients, either there are infinitely many positive integers ${\displaystyle n}$ for which ${\displaystyle f_{1}(n),\ldots ,f_{k}(n)}$ are all primes, or there is some fixed divisor ${\displaystyle m>1}$ which, for all ${\displaystyle n}$, divides some ${\displaystyle f_{i}(n)}$.
• Selfridge's conjecture: is 78,557 the lowest Sierpiński number?
• Twin prime conjecture: there are infinitely many twin primes.
• Does the converse of Wolstenholme's theorem hold for all natural numbers?

### Set theory

Note: These conjectures are about models of Zermelo-Frankel set theory with choice, and may not be able to be expressed in models of other set theories such as the various constructive set theories or non-wellfounded set theory.

### Topology

The unknotting problem asks whether there is an efficient algorithm to identify when the shape presented in a knot diagram is actually the unknot.

## Problems solved since 1995

Ricci flow, here illustrated with a 2D manifold, was the key tool in Grigori Perelman's solution of the Poincaré conjecture.

## References

1. ^ Thiele, Rüdiger (2005), "On Hilbert and his twenty-four problems", in Van Brummelen, Glen (ed.), Mathematics and the historian's craft. The Kenneth O. May Lectures, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 21, pp. 243–295, ISBN  978-0-387-25284-1
2. ^ Guy, Richard (1994), Unsolved Problems in Number Theory (2nd ed.), Springer, p. vii, ISBN  978-1-4899-3585-4, archived from the original on 2019-03-23, retrieved 2016-09-22.
3. ^ Shimura, G. (1989). "Yutaka Taniyama and his time". Bulletin of the London Mathematical Society. 21 (2): 186–196. doi: 10.1112/blms/21.2.186.
4. ^ Friedl, Stefan (2014). "Thurston's vision and the virtual fibering theorem for 3-manifolds". Jahresbericht der Deutschen Mathematiker-Vereinigung. 116 (4): 223–241. doi: 10.1365/s13291-014-0102-x. MR  3280572. S2CID  56322745.
5. ^ Thurston, William P. (1982). "Three-dimensional manifolds, Kleinian groups and hyperbolic geometry". Bulletin of the American Mathematical Society. New Series. 6 (3): 357–381. doi: 10.1090/S0273-0979-1982-15003-0. MR  0648524.
6. ^ a b "Millennium Problems". claymath.org. Archived from the original on 2017-06-06. Retrieved 2015-01-20.
7. ^ "Fields Medal awarded to Artur Avila". Centre national de la recherche scientifique. 2014-08-13. Archived from the original on 2018-07-10. Retrieved 2018-07-07.
8. ^ Bellos, Alex (2014-08-13). "Fields Medals 2014: the maths of Avila, Bhargava, Hairer and Mirzakhani explained". The Guardian. Archived from the original on 2016-10-21. Retrieved 2018-07-07.
9. ^ Abe, Jair Minoro; Tanaka, Shotaro (2001). Unsolved Problems on Mathematics for the 21st Century. IOS Press. ISBN  978-9051994902.
10. ^ "DARPA invests in math". CNN. 2008-10-14. Archived from the original on 2009-03-04. Retrieved 2013-01-14.
11. ^ "Broad Agency Announcement (BAA 07-68) for Defense Sciences Office (DSO)". DARPA. 2007-09-10. Archived from the original on 2012-10-01. Retrieved 2013-06-25.
12. ^ "Poincaré Conjecture". Clay Mathematics Institute. Archived from the original on 2013-12-15.
13. ^ rybu (November 7, 2009). "Smooth 4-dimensional Poincare conjecture". Open Problem Garden. Archived from the original on 2018-01-25. Retrieved 2019-08-06.
14. ^ Dowling, T. A. (February 1973). "A class of geometric lattices based on finite groups". Journal of Combinatorial Theory. Series B. 14 (1): 61–86. doi:.
15. ^
16. ^ Эрлаголъская тетрадъ [Erlagol notebook] (PDF) (in Russian), The Novosibirsk State University, 2018
17. ^ a b Waldschmidt, Michel (2013), Diophantine Approximation on Linear Algebraic Groups: Transcendence Properties of the Exponential Function in Several Variables, Springer, pp. 14, 16, ISBN  9783662115695
18. ^ Kung, H. T.; Traub, Joseph Frederick (1974), "Optimal order of one-point and multipoint iteration", Journal of the ACM, 21 (4): 643–651, doi: 10.1145/321850.321860, S2CID  74921
19. ^ Smyth, Chris (2008), "The Mahler measure of algebraic numbers: a survey", in McKee, James; Smyth, Chris (eds.), Number Theory and Polynomials, London Mathematical Society Lecture Note Series, vol. 352, Cambridge University Press, pp. 322–349, ISBN  978-0-521-71467-9
20. ^ Berenstein, Carlos A. (2001) [1994], "Pompeiu problem", Encyclopedia of Mathematics, EMS Press
21. ^ For some background on the numbers in this problem, see articles by Eric W. Weisstein at Wolfram MathWorld (all articles accessed 15 December 2014):
22. ^ Waldschmidt, Michel (2008). An introduction to irrationality and transcendence methods (PDF). 2008 Arizona Winter School. Archived from the original (PDF) on 16 December 2014. Retrieved 15 December 2014.
23. ^ Albert, John, Some unsolved problems in number theory (PDF), archived from the original (PDF) on 17 December 2014, retrieved 15 December 2014
24. ^ Brightwell, Graham R.; Felsner, Stefan; Trotter, William T. (1995), "Balancing pairs and the cross product conjecture", Order, 12 (4): 327–349, CiteSeerX , doi: 10.1007/BF01110378, MR  1368815, S2CID  14793475.
25. ^ Tao, Terence (2018). "Some remarks on the lonely runner conjecture". Contributions to Discrete Mathematics. 13 (2): 1–31. arXiv:. doi:.
26. ^ Bruhn, Henning; Schaudt, Oliver (2015), "The journey of the union-closed sets conjecture" (PDF), Graphs and Combinatorics, 31 (6): 2043–2074, arXiv:, doi: 10.1007/s00373-014-1515-0, MR  3417215, S2CID  17531822, archived (PDF) from the original on 2017-08-08, retrieved 2017-07-18
27. ^ Murnaghan, F. D. (1938), "The Analysis of the Direct Product of Irreducible Representations of the Symmetric Groups", American Journal of Mathematics, 60 (1): 44–65, doi: 10.2307/2371542, JSTOR  2371542, MR  1507301, PMC , PMID  16577800
28. ^ "Dedekind Numbers and Related Sequences" (PDF). Archived from the original (PDF) on 2015-03-15. Retrieved 2020-04-30.
29. ^ Liśkiewicz, Maciej; Ogihara, Mitsunori; Toda, Seinosuke (2003-07-28). "The complexity of counting self-avoiding walks in subgraphs of two-dimensional grids and hypercubes". Theoretical Computer Science. 304 (1): 129–156. doi: 10.1016/S0304-3975(03)00080-X.
30. ^ S. M. Ulam, Problems in Modern Mathematics. Science Editions John Wiley & Sons, Inc., New York, 1964, page 76.
31. ^ Kaloshin, Vadim; Sorrentino, Alfonso (2018). "On the local Birkhoff conjecture for convex billiards". Annals of Mathematics. 188 (1): 315–380. arXiv:. doi: 10.4007/annals.2018.188.1.6. S2CID  119171182.
32. ^ Sarnak, Peter (2011), "Recent progress on the quantum unique ergodicity conjecture", Bulletin of the American Mathematical Society, 48 (2): 211–228, doi:, MR  2774090
33. ^ Paul Halmos, Ergodic theory. Chelsea, New York, 1956.
34. ^ Kari, Jarkko (2009). "Structure of reversible cellular automata". Structure of Reversible Cellular Automata. International Conference on Unconventional Computation. Lecture Notes in Computer Science. Vol. 5715. Springer. p. 6. Bibcode: 2009LNCS.5715....6K. doi:. ISBN  978-3-642-03744-3.
35. ^ a b c "Open Q - Solving and rating of hard Sudoku". english.log-it-ex.com. Archived from the original on 10 November 2017.
36. ^ "Higher-Dimensional Tic-Tac-Toe". PBS Infinite Series. YouTube. 2017-09-21. Archived from the original on 2017-10-11. Retrieved 2018-07-29.
37. ^ Barlet, Daniel; Peternell, Thomas; Schneider, Michael (1990). "On two conjectures of Hartshorne's". Mathematische Annalen. 286 (1–3): 13–25. doi: 10.1007/BF01453563. S2CID  122151259.
38. ^ Maulik, Davesh; Nekrasov, Nikita; Okounov, Andrei; Pandharipande, Rahul (2004-06-05), Gromov–Witten theory and Donaldson–Thomas theory, I, arXiv:, Bibcode: 2003math.....12059M
39. ^ Zariski, Oscar (1971). "Some open questions in the theory of singularities". Bulletin of the American Mathematical Society. 77 (4): 481–491. doi:. MR  0277533.
40. ^ Bereg, Sergey; Dumitrescu, Adrian; Jiang, Minghui (2010), "On covering problems of Rado", Algorithmica, 57 (3): 538–561, doi: 10.1007/s00453-009-9298-z, MR  2609053, S2CID  6511998
41. ^ Melissen, Hans (1993), "Densest packings of congruent circles in an equilateral triangle", American Mathematical Monthly, 100 (10): 916–925, doi: 10.2307/2324212, JSTOR  2324212, MR  1252928
42. ^ Conway, John H.; Neil J.A. Sloane (1999), Sphere Packings, Lattices and Groups (3rd ed.), New York: Springer-Verlag, pp.  21–22, ISBN  978-0-387-98585-5
43. ^ Hales, Thomas (2017), The Reinhardt conjecture as an optimal control problem, arXiv:
44. ^ Brass, Peter; Moser, William; Pach, János (2005), Research Problems in Discrete Geometry, New York: Springer, p. 45, ISBN  978-0387-23815-9, MR  2163782
45. ^ Gardner, Martin (1995), New Mathematical Diversions (Revised Edition), Washington: Mathematical Association of America, p. 251
46. ^ Barros, Manuel (1997), "General Helices and a Theorem of Lancret", Proceedings of the American Mathematical Society, 125 (5): 1503–1509, doi:, JSTOR  2162098
47. ^ Katz, Mikhail G. (2007), Systolic geometry and topology, Mathematical Surveys and Monographs, vol. 137, American Mathematical Society, Providence, RI, p. 57, doi: 10.1090/surv/137, ISBN  978-0-8218-4177-8, MR  2292367
48. ^ Rosenberg, Steven (1997), The Laplacian on a Riemannian Manifold: An introduction to analysis on manifolds, London Mathematical Society Student Texts, vol. 31, Cambridge: Cambridge University Press, pp. 62–63, doi: 10.1017/CBO9780511623783, ISBN  978-0-521-46300-3, MR  1462892
49. ^ Boltjansky, V.; Gohberg, I. (1985), "11. Hadwiger's Conjecture", Results and Problems in Combinatorial Geometry, Cambridge University Press, pp. 44–46.
50. ^ Morris, Walter D.; Soltan, Valeriu (2000), "The Erdős-Szekeres problem on points in convex position—a survey", Bull. Amer. Math. Soc., 37 (4): 437–458, doi:, MR  1779413; Suk, Andrew (2016), "On the Erdős–Szekeres convex polygon problem", J. Amer. Math. Soc., 30 (4): 1047–1053, arXiv:, doi: 10.1090/jams/869, S2CID  15732134
51. ^ Kalai, Gil (1989), "The number of faces of centrally-symmetric polytopes", Graphs and Combinatorics, 5 (1): 389–391, doi: 10.1007/BF01788696, MR  1554357, S2CID  8917264.
52. ^
53. ^ Guy, Richard K. (1983), "An olla-podrida of open problems, often oddly posed", American Mathematical Monthly, 90 (3): 196–200, doi: 10.2307/2975549, JSTOR  2975549, MR  1540158
54. ^ Matoušek, Jiří (2002), Lectures on discrete geometry, Graduate Texts in Mathematics, vol. 212, Springer-Verlag, New York, p. 206, doi: 10.1007/978-1-4613-0039-7, ISBN  978-0-387-95373-1, MR  1899299
55. ^ Brass, Peter; Moser, William; Pach, János (2005), "5.1 The Maximum Number of Unit Distances in the Plane", Research problems in discrete geometry, Springer, New York, pp. 183–190, ISBN  978-0-387-23815-9, MR  2163782
56. ^ Dey, Tamal K. (1998), "Improved bounds for planar k-sets and related problems", Discrete Comput. Geom., 19 (3): 373–382, doi:, MR  1608878; Tóth, Gábor (2001), "Point sets with many k-sets", Discrete Comput. Geom., 26 (2): 187–194, doi:, MR  1843435.
57. ^ Aronov, Boris; Dujmović, Vida; Morin, Pat; Ooms, Aurélien; Schultz Xavier da Silveira, Luís Fernando (2019), "More Turán-type theorems for triangles in convex point sets", Electronic Journal of Combinatorics, 26 (1): P1.8, arXiv:, Bibcode: 2017arXiv170610193A, doi:, archived from the original on 2019-02-18, retrieved 2019-02-18
58. ^ Atiyah, Michael (2001), "Configurations of points", Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 359 (1784): 1375–1387, Bibcode: 2001RSPTA.359.1375A, doi: 10.1098/rsta.2001.0840, ISSN  1364-503X, MR  1853626, S2CID  55833332
59. ^ Finch, S. R.; Wetzel, J. E. (2004), "Lost in a forest", American Mathematical Monthly, 11 (8): 645–654, doi: 10.2307/4145038, JSTOR  4145038, MR  2091541
60. ^ Solomon, Yaar; Weiss, Barak (2016), "Dense forests and Danzer sets", Annales Scientifiques de l'École Normale Supérieure, 49 (5): 1053–1074, arXiv:, doi: 10.24033/asens.2303, MR  3581810, S2CID  672315; Conway, John H., Five $1,000 Problems (Update 2017) (PDF), On-Line Encyclopedia of Integer Sequences, archived (PDF) from the original on 2019-02-13, retrieved 2019-02-12 61. ^ Socolar, Joshua E. S.; Taylor, Joan M. (2012), "Forcing nonperiodicity with a single tile", The Mathematical Intelligencer, 34 (1): 18–28, arXiv:, doi: 10.1007/s00283-011-9255-y, MR 2902144, S2CID 10747746 62. ^ Arutyunyants, G.; Iosevich, A. (2004), "Falconer conjecture, spherical averages and discrete analogs", in Pach, János (ed.), Towards a Theory of Geometric Graphs, Contemp. Math., vol. 342, Amer. Math. Soc., Providence, RI, pp. 15–24, doi:, ISBN 9780821834848, MR 2065249 63. ^ Matschke, Benjamin (2014), "A survey on the square peg problem", Notices of the American Mathematical Society, 61 (4): 346–352, doi: 64. ^ Katz, Nets; Tao, Terence (2002), "Recent progress on the Kakeya conjecture", Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations (El Escorial, 2000), Publicacions Matemàtiques (Vol. Extra): 161–179, CiteSeerX , doi: 10.5565/PUBLMAT_Esco02_07, MR 1964819, S2CID 77088 65. ^ Weaire, Denis, ed. (1997), The Kelvin Problem, CRC Press, p. 1, ISBN 9780748406326 66. ^ Brass, Peter; Moser, William; Pach, János (2005), Research problems in discrete geometry, New York: Springer, p. 457, ISBN 9780387299297, MR 2163782 67. ^ Mahler, Kurt (1939). "Ein Minimalproblem für konvexe Polygone". Mathematica (Zutphen) B: 118–127. 68. ^ Norwood, Rick; Poole, George; Laidacker, Michael (1992), "The worm problem of Leo Moser", Discrete and Computational Geometry, 7 (2): 153–162, doi:, MR 1139077 69. ^ Wagner, Neal R. (1976), "The Sofa Problem" (PDF), The American Mathematical Monthly, 83 (3): 188–189, doi: 10.2307/2977022, JSTOR 2977022, archived (PDF) from the original on 2015-04-20, retrieved 2014-05-14 70. ^ Chai, Ying; Yuan, Liping; Zamfirescu, Tudor (June–July 2018), "Rupert Property of Archimedean Solids", The American Mathematical Monthly, 125 (6): 497–504, doi: 10.1080/00029890.2018.1449505, S2CID 125508192 71. ^ Steininger, Jakob; Yurkevich, Sergey (December 27, 2021), An algorithmic approach to Rupert's problem, arXiv: 72. ^ Demaine, Erik D.; O'Rourke, Joseph (2007), "Chapter 22. Edge Unfolding of Polyhedra", Geometric Folding Algorithms: Linkages, Origami, Polyhedra, Cambridge University Press, pp. 306–338 73. ^ Ghomi, Mohammad (2018-01-01). "D "urer's Unfolding Problem for Convex Polyhedra". Notices of the American Mathematical Society. 65 (1): 25–27. doi:. ISSN 0002-9920. 74. ^ Whyte, L. L. (1952), "Unique arrangements of points on a sphere", The American Mathematical Monthly, 59 (9): 606–611, doi: 10.2307/2306764, JSTOR 2306764, MR 0050303 75. ^ Howards, Hugh Nelson (2013), "Forming the Borromean rings out of arbitrary polygonal unknots", Journal of Knot Theory and Its Ramifications, 22 (14): 1350083, 15, arXiv:, doi: 10.1142/S0218216513500831, MR 3190121, S2CID 119674622 76. ^ Brandts, Jan; Korotov, Sergey; Křížek, Michal; Šolc, Jakub (2009), "On nonobtuse simplicial partitions" (PDF), SIAM Review, 51 (2): 317–335, Bibcode: 2009SIAMR..51..317B, doi: 10.1137/060669073, MR 2505583, archived (PDF) from the original on 2018-11-04, retrieved 2018-11-22. See in particular Conjecture 23, p. 327. 77. ^ ACW (May 24, 2012), "Convex uniform 5-polytopes", Open Problem Garden, archived from the original on October 5, 2016, retrieved 2016-10-04. 78. ^ Bousquet, Nicolas; Bartier, Valentin (2019), "Linear Transformations Between Colorings in Chordal Graphs", in Bender, Michael A.; Svensson, Ola; Herman, Grzegorz (eds.), 27th Annual European Symposium on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching, Germany, LIPIcs, vol. 144, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 24:1–24:15, doi: 10.4230/LIPIcs.ESA.2019.24, ISBN 9783959771245, S2CID 195791634 79. ^ Chung, Fan; Graham, Ron (1998), Erdős on Graphs: His Legacy of Unsolved Problems, A K Peters, pp. 97–99. 80. ^ Chudnovsky, Maria; Seymour, Paul (2014), "Extending the Gyárfás-Sumner conjecture", Journal of Combinatorial Theory, Series B, 105: 11–16, doi:, MR 3171779 81. ^ Toft, Bjarne (1996), "A survey of Hadwiger's conjecture", Congressus Numerantium, 115: 249–283, MR 1411244. 82. ^ Croft, Hallard T.; Falconer, Kenneth J.; Guy, Richard K. (1991), Unsolved Problems in Geometry, Springer-Verlag, Problem G10. 83. ^ Hägglund, Jonas; Steffen, Eckhard (2014), "Petersen-colorings and some families of snarks", Ars Mathematica Contemporanea, 7 (1): 161–173, doi:, MR 3047618, archived from the original on 2016-10-03, retrieved 2016-09-30. 84. ^ Jensen, Tommy R.; Toft, Bjarne (1995), "12.20 List-Edge-Chromatic Numbers", Graph Coloring Problems, New York: Wiley-Interscience, pp. 201–202, ISBN 978-0-471-02865-9. 85. ^ Molloy, Michael; Reed, Bruce (1998), "A bound on the total chromatic number", Combinatorica, 18 (2): 241–280, CiteSeerX , doi: 10.1007/PL00009820, MR 1656544, S2CID 9600550. 86. ^ Barát, János; Tóth, Géza (2010), "Towards the Albertson Conjecture", Electronic Journal of Combinatorics, 17 (1): R73, arXiv:, Bibcode: 2009arXiv0909.0413B, doi:. 87. ^ Fulek, Radoslav; Pach, János (2011), "A computational approach to Conway's thrackle conjecture", Computational Geometry, 44 (6–7): 345–355, arXiv:, doi:, MR 2785903. 88. ^ Hartsfield, Nora; Ringel, Gerhard (2013), Pearls in Graph Theory: A Comprehensive Introduction, Dover Books on Mathematics, Courier Dover Publications, p. 247, ISBN 978-0-486-31552-2, MR 2047103. 89. ^ Hliněný, Petr (2010), "20 years of Negami's planar cover conjecture" (PDF), Graphs and Combinatorics, 26 (4): 525–536, CiteSeerX , doi: 10.1007/s00373-010-0934-9, MR 2669457, S2CID 121645, archived (PDF) from the original on 2016-03-04, retrieved 2016-10-04. 90. ^ Nöllenburg, Martin; Prutkin, Roman; Rutter, Ignaz (2016), "On self-approaching and increasing-chord drawings of 3-connected planar graphs", Journal of Computational Geometry, 7 (1): 47–69, arXiv:, doi: 10.20382/jocg.v7i1a3, MR 3463906, S2CID 1500695 91. ^ Pach, János; Sharir, Micha (2009), "5.1 Crossings—the Brick Factory Problem", Combinatorial Geometry and Its Algorithmic Applications: The Alcalá Lectures, Mathematical Surveys and Monographs, vol. 152, American Mathematical Society, pp. 126–127. 92. ^ Demaine, E.; O'Rourke, J. (2002–2012), "Problem 45: Smallest Universal Set of Points for Planar Graphs", The Open Problems Project, archived from the original on 2012-08-14, retrieved 2013-03-19. 93. ^ Florek, Jan (2010), "On Barnette's conjecture", Discrete Mathematics, 310 (10–11): 1531–1535, doi: 10.1016/j.disc.2010.01.018, MR 2601261. 94. ^ Broersma, Hajo; Patel, Viresh; Pyatkin, Artem (2014), "On toughness and Hamiltonicity of$2K_2$-free graphs", Journal of Graph Theory, 75 (3): 244–255, doi: 10.1002/jgt.21734, MR 3153119, S2CID 1377980 95. ^ Jaeger, F. (1985), "A survey of the cycle double cover conjecture", Annals of Discrete Mathematics 27 – Cycles in Graphs, North-Holland Mathematics Studies, vol. 27, pp. 1–12, doi: 10.1016/S0304-0208(08)72993-1, ISBN 9780444878038. 96. ^ Heckman, Christopher Carl; Krakovski, Roi (2013), "Erdös-Gyárfás conjecture for cubic planar graphs", Electronic Journal of Combinatorics, 20 (2), P7, doi:. 97. ^ Akiyama, Jin; Exoo, Geoffrey; Harary, Frank (1981), "Covering and packing in graphs. IV. Linear arboricity", Networks, 11 (1): 69–72, doi: 10.1002/net.3230110108, MR 0608921. 98. ^ Babai, László (June 9, 1994). "Automorphism groups, isomorphism, reconstruction". Handbook of Combinatorics. Archived from the original (PostScript) on 13 June 2007. 99. ^ Lenz, Hanfried; Ringel, Gerhard (1991), "A brief review on Egmont Köhler's mathematical work", Discrete Mathematics, 97 (1–3): 3–16, doi: 10.1016/0012-365X(91)90416-Y, MR 1140782 100. Kitaev, Sergey; Lozin, Vadim (2015). Words and Graphs. Monographs in Theoretical Computer Science. An EATCS Series. doi: 10.1007/978-3-319-25859-1. ISBN 978-3-319-25857-7. S2CID 7727433 – via link.springer.com. 101. Kitaev, S. V.; Pyatkin, A. V. (April 1, 2018). "Word-Representable Graphs: a Survey". Journal of Applied and Industrial Mathematics. 12 (2): 278–296. doi: 10.1134/S1990478918020084. S2CID 125814097 – via Springer Link. 102. Kitaev, Sergey V.; Pyatkin, Artem V. (2018). "Графы, представимые в виде слов. Обзор результатов" [Word-representable graphs: A survey]. Дискретн. анализ и исслед. опер. (in Russian). 25 (2): 19–53. doi: 10.17377/daio.2018.25.588. 103. ^ Marc Elliot Glen (2016). "Colourability and word-representability of near-triangulations". arXiv: [ math.CO]. 104. ^ Kitaev, Sergey (2014-03-06). "On graphs with representation number 3". arXiv:. doi: 10.48550/arXiv.1403.1616. {{ cite journal}}: Cite journal requires |journal= ( help) 105. ^ Glen, Marc; Kitaev, Sergey; Pyatkin, Artem (2018). "On the representation number of a crown graph". Discrete Applied Mathematics. 244: 89–93. arXiv:. doi: 10.1016/j.dam.2018.03.013. S2CID 46925617. 106. ^ Conway, John H., Five$1,000 Problems (Update 2017) (PDF), Online Encyclopedia of Integer Sequences, archived (PDF) from the original on 2019-02-13, retrieved 2019-02-12
107. ^ Chudnovsky, Maria (2014), "The Erdös–Hajnal conjecture—a survey" (PDF), Journal of Graph Theory, 75 (2): 178–190, arXiv:, doi: 10.1002/jgt.21730, MR  3150572, S2CID  985458, Zbl  1280.05086, archived (PDF) from the original on 2016-03-04, retrieved 2016-09-22.
108. ^ Gupta, Anupam; Newman, Ilan; Rabinovich, Yuri; Sinclair, Alistair (2004), "Cuts, trees and ${\displaystyle \ell _{1}}$-embeddings of graphs", Combinatorica, 24 (2): 233–269, CiteSeerX , doi: 10.1007/s00493-004-0015-x, MR  2071334, S2CID  46133408
109. ^ Pleanmani, Nopparat (2019), "Graham's pebbling conjecture holds for the product of a graph and a sufficiently large complete bipartite graph", Discrete Mathematics, Algorithms and Applications, 11 (6): 1950068, 7, doi: 10.1142/s179383091950068x, MR  4044549, S2CID  204207428
110. ^ Spinrad, Jeremy P. (2003), "2. Implicit graph representation", Efficient Graph Representations, pp. 17–30, ISBN  978-0-8218-2815-1.
111. ^ mdevos; Wood, David (December 7, 2019), "Jorgensen's Conjecture", Open Problem Garden, archived from the original on 2016-11-14, retrieved 2016-11-13.
112. ^ Baird, William; Bonato, Anthony (2012), "Meyniel's conjecture on the cop number: a survey", Journal of Combinatorics, 3 (2): 225–238, arXiv:, doi: 10.4310/JOC.2012.v3.n2.a6, MR  2980752, S2CID  18942362
113. ^ Schwenk, Allen (2012). Some History on the Reconstruction Conjecture (PDF). Joint Mathematics Meetings. Archived from the original (PDF) on 2015-04-09. Retrieved 2018-11-26.
114. ^ Ramachandran, S. (1981), "On a new digraph reconstruction conjecture", Journal of Combinatorial Theory, Series B, 31 (2): 143–149, doi:, MR  0630977
115. ^ "Seymour's 2nd Neighborhood Conjecture". faculty.math.illinois.edu. Archived from the original on 11 January 2019. Retrieved 17 August 2022.
116. ^ Blokhuis, A.; Brouwer, A. E. (1988), "Geodetic graphs of diameter two", Geometriae Dedicata, 25 (1–3): 527–533, doi: 10.1007/BF00191941, MR  0925851, S2CID  189890651
117. ^ Kühn, Daniela; Mycroft, Richard; Osthus, Deryk (2011), "A proof of Sumner's universal tournament conjecture for large tournaments", Proceedings of the London Mathematical Society, Third Series, 102 (4): 731–766, arXiv:, doi: 10.1112/plms/pdq035, MR  2793448, S2CID  119169562, Zbl  1218.05034.
118. ^ mdevos (May 4, 2007). "5-flow conjecture". Open Problem Garden. Archived from the original on November 26, 2018.
119. ^ mdevos (March 31, 2010). "4-flow conjecture". Open Problem Garden. Archived from the original on November 26, 2018.
120. ^ Brešar, Boštjan; Dorbec, Paul; Goddard, Wayne; Hartnell, Bert L.; Henning, Michael A.; Klavžar, Sandi; Rall, Douglas F. (2012), "Vizing's conjecture: a survey and recent results", Journal of Graph Theory, 69 (1): 46–76, CiteSeerX , doi: 10.1002/jgt.20565, MR  2864622, S2CID  9120720.
121. ^ Ducey, Joshua E. (2017), "On the critical group of the missing Moore graph", Discrete Mathematics, 340 (5): 1104–1109, arXiv:, doi: 10.1016/j.disc.2016.10.001, MR  3612450, S2CID  28297244
122. ^ Fomin, Fedor V.; Høie, Kjartan (2006), "Pathwidth of cubic graphs and exact algorithms", Information Processing Letters, 97 (5): 191–196, doi: 10.1016/j.ipl.2005.10.012, MR  2195217
123. ^ Aschbacher, Michael (1990), "On Conjectures of Guralnick and Thompson", Journal of Algebra, 135 (2): 277–343, doi: 10.1016/0021-8693(90)90292-V
124. ^ Khukhro, Evgeny I.; Mazurov, Victor D. (2019), Unsolved Problems in Group Theory. The Kourovka Notebook, arXiv:
125. ^ Hrushovski, Ehud (1989). "Kueker's conjecture for stable theories". Journal of Symbolic Logic. 54 (1): 207–220. doi: 10.2307/2275025. JSTOR  2275025. S2CID  41940041.
126. ^ a b c Shelah S, Classification Theory, North-Holland, 1990
127. ^ Shelah, Saharon (2009). Classification theory for abstract elementary classes. College Publications. ISBN  978-1-904987-71-0.
128. ^ Peretz, Assaf (2006). "Geometry of forking in simple theories". Journal of Symbolic Logic. 71 (1): 347–359. arXiv:. doi: 10.2178/jsl/1140641179. S2CID  9380215.
129. ^ Cherlin, G.; Shelah, S. (May 2007). "Universal graphs with a forbidden subtree". Journal of Combinatorial Theory, Series B. 97 (3): 293–333. arXiv:. doi: 10.1016/j.jctb.2006.05.008. S2CID  10425739.
130. ^ Džamonja, Mirna, "Club guessing and the universal models." On PCF, ed. M. Foreman, (Banff, Alberta, 2004).
131. ^ Shelah, Saharon (1999). "Borel sets with large squares". Fundamenta Mathematicae. 159 (1): 1–50. arXiv:. Bibcode: 1998math......2134S. doi: 10.4064/fm-159-1-1-50. S2CID  8846429.
132. ^ Baldwin, John T. (July 24, 2009). Categoricity (PDF). American Mathematical Society. ISBN  978-0-8218-4893-7. Archived (PDF) from the original on July 29, 2010. Retrieved February 20, 2014.
133. ^ Shelah, Saharon (2009). "Introduction to classification theory for abstract elementary classes". arXiv:. Bibcode: 2009arXiv0903.3428S. {{ cite journal}}: Cite journal requires |journal= ( help)
134. ^ Gurevich, Yuri, "Monadic Second-Order Theories," in J. Barwise, S. Feferman, eds., Model-Theoretic Logics (New York: Springer-Verlag, 1985), 479–506.
135. ^ Makowsky J, "Compactness, embeddings and definability," in Model-Theoretic Logics, eds Barwise and Feferman, Springer 1985 pps. 645–715.
136. ^ Keisler, HJ (1967). "Ultraproducts which are not saturated". J. Symb. Log. 32 (1): 23–46. doi: 10.2307/2271240. JSTOR  2271240. S2CID  250345806.
137. ^ Malliaris, Maryanthe; Shelah, Saharon (10 August 2012). "A Dividing Line Within Simple Unstable Theories". arXiv: [ math.LO]. Archived 2017-08-02 at the Wayback Machine
138. ^ Conrey, Brian (2016), "Lectures on the Riemann zeta function (book review)", Bulletin of the American Mathematical Society, 53 (3): 507–512, doi:
139. ^ Singmaster, David (1971), "Research Problems: How often does an integer occur as a binomial coefficient?", American Mathematical Monthly, 78 (4): 385–386, doi: 10.2307/2316907, JSTOR  2316907, MR  1536288.
140. ^ Aigner, Martin (2013), Markov's theorem and 100 years of the uniqueness conjecture, Cham: Springer, doi: 10.1007/978-3-319-00888-2, ISBN  978-3-319-00887-5, MR  3098784
141. ^ Guo, Song; Sun, Zhi-Wei (2005), "On odd covering systems with distinct moduli", Advances in Applied Mathematics, 35 (2): 182–187, arXiv:, doi: 10.1016/j.aam.2005.01.004, MR  2152886, S2CID  835158
142. ^ "Are the Digits of Pi Random? Berkeley Lab Researcher May Hold Key". Archived from the original on 2016-03-27. Retrieved 2016-03-18.
143. ^ Robertson, John P. (1996-10-01). "Magic Squares of Squares". Mathematics Magazine. 69 (4): 289–293. doi: 10.1080/0025570X.1996.11996457. ISSN  0025-570X.
144. ^ Huisman, Sander G. (2016). "Newer sums of three cubes". arXiv: [ math.NT].
145. ^ Dobson, J. B. (1 April 2017), "On Lerch's formula for the Fermat quotient", p. 23, arXiv: [ math.NT]
146. ^ Ribenboim, P. (2006). Die Welt der Primzahlen. Springer-Lehrbuch (in German) (2nd ed.). Springer. pp. 242–243. doi: 10.1007/978-3-642-18079-8. ISBN  978-3-642-18078-1.
147. ^ Mazur, Barry (1992), "The topology of rational points", Experimental Mathematics, 1 (1): 35–45, doi: 10.1080/10586458.1992.10504244, S2CID  17372107, archived from the original on 2019-04-07, retrieved 2019-04-07
148. ^ Kuperberg, Greg (1994), "Quadrisecants of knots and links", Journal of Knot Theory and Its Ramifications, 3: 41–50, arXiv:, doi: 10.1142/S021821659400006X, MR  1265452, S2CID  6103528
149. ^ Casazza, Peter G.; Fickus, Matthew; Tremain, Janet C.; Weber, Eric (2006). "The Kadison-Singer problem in mathematics and engineering: A detailed account". In Han, Deguang; Jorgensen, Palle E. T.; Larson, David Royal (eds.). Large Deviations for Additive Functionals of Markov Chains: The 25th Great Plains Operator Theory Symposium, June 7–12, 2005, University of Central Florida, Florida. Contemporary Mathematics. Vol. 414. American Mathematical Society. pp. 299–355. doi: 10.1090/conm/414/07820. ISBN  978-0-8218-3923-2. Retrieved 24 April 2015.
150. ^ Mackenzie, Dana. "Kadison–Singer Problem Solved" (PDF). SIAM News. No. January/February 2014. Society for Industrial and Applied Mathematics. Archived (PDF) from the original on 23 October 2014. Retrieved 24 April 2015.
151. ^ a b Agol, Ian (2004). "Tameness of hyperbolic 3-manifolds". arXiv:.
152. ^ Kurdyka, Krzysztof; Mostowski, Tadeusz; Parusiński, Adam (2000). "Proof of the gradient conjecture of R. Thom". Annals of Mathematics. 152 (3): 763–792. arXiv:. doi: 10.2307/2661354. JSTOR  2661354. S2CID  119137528.
153. ^ Moreira, Joel; Richter, Florian K.; Robertson, Donald (2019). "A proof of a sumset conjecture of Erdős". Annals of Mathematics. 189 (2): 605–652. arXiv:. doi: 10.4007/annals.2019.189.2.4. S2CID  119158401.
154. ^ Stanley, Richard P. (1994), "A survey of Eulerian posets", in Bisztriczky, T.; McMullen, P.; Schneider, R.; Weiss, A. IviÄ‡ (eds.), Polytopes: abstract, convex and computational (Scarborough, ON, 1993), NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, vol. 440, Dordrecht: Kluwer Academic Publishers, pp. 301–333, MR  1322068. See in particular p. 316.
155. ^ Kalai, Gil (2018-12-25). "Amazing: Karim Adiprasito proved the g-conjecture for spheres!". Archived from the original on 2019-02-16. Retrieved 2019-02-15.
156. ^ Santos, Franciscos (2012). "A counterexample to the Hirsch conjecture". Annals of Mathematics. 176 (1): 383–412. arXiv:. doi: 10.4007/annals.2012.176.1.7. S2CID  15325169.
157. ^ Ziegler, Günter M. (2012). "Who solved the Hirsch conjecture?". Documenta Mathematica. Extra Volume "Optimization Stories": 75–85.
158. ^ Chung, Fan; Greene, Curtis; Hutchinson, Joan (April 2015). "Herbert S. Wilf (1931–2012)". Notices of the AMS. 62 (4): 358. doi:. ISSN  1088-9477. OCLC  34550461. The conjecture was finally given an exceptionally elegant proof by A. Marcus and G. Tardos in 2004.
159. ^ Savchev, Svetoslav (2005). "Kemnitz' conjecture revisited". Discrete Mathematics. 297 (1–3): 196–201. doi:.
160. ^ Green, Ben (2004). "The Cameron–Erdős conjecture". The Bulletin of the London Mathematical Society. 36 (6): 769–778. arXiv:. doi: 10.1112/S0024609304003650. MR  2083752. S2CID  119615076.
161. ^ "News from 2007". American Mathematical Society. AMS. 31 December 2007. Archived from the original on 17 November 2015. Retrieved 2015-11-13. The 2007 prize also recognizes Green for "his many outstanding results including his resolution of the Cameron-Erdős conjecture..."
162. ^ Xue, Jinxin (2014). "Noncollision Singularities in a Planar Four-body Problem". arXiv:. {{ cite journal}}: Cite journal requires |journal= ( help)
163. ^ Xue, Jinxin (2020). "Non-collision singularities in a planar 4-body problem". Acta Mathematica. 224 (2): 253–388. doi: 10.4310/ACTA.2020.v224.n2.a2. S2CID  226420221.
164. ^ Bowditch, Brian H. (2006). "The angel game in the plane" (PDF). School of Mathematics, University of Southampton: warwick.ac.uk Warwick University. Archived (PDF) from the original on 2016-03-04. Retrieved 2016-03-18.
165. ^ Kloster, Oddvar. "A Solution to the Angel Problem" (PDF). SINTEF ICT, Postboks 124 Blindern, 0314 Oslo, Norway. Archived from the original (PDF) on 2016-01-07. Retrieved 2016-03-18.{{ cite web}}: CS1 maint: location ( link)
166. ^ Mathe, Andras (2007). "The Angel of power 2 wins" (PDF). Combinatorics, Probability and Computing. 16 (3): 363–374. doi: 10.1017/S0963548306008303. S2CID  16892955. Archived (PDF) from the original on 2016-10-13. Retrieved 2016-03-18.
167. ^ Gacs, Peter (June 19, 2007). "THE ANGEL WINS" (PDF). Archived from the original (PDF) on 2016-03-04. Retrieved 2016-03-18.
168. ^ Song, Antoine. "Existence of infinitely many minimal hypersurfaces in closed manifolds" (PDF). www.ams.org. Retrieved 19 June 2021. ..I will present a solution of the conjecture, which builds on min-max methods developed by F. C. Marques and A. Neves..
169. ^ "Antoine Song | Clay Mathematics Institute". ...Building on work of Codá Marques and Neves, in 2018 Song proved Yau's conjecture in complete generality
170. ^ Wolchover, Natalie (July 11, 2017), "Pentagon Tiling Proof Solves Century-Old Math Problem", Quanta Magazine, archived from the original on August 6, 2017, retrieved July 18, 2017
171. ^ Marques, Fernando C.; Neves, André (2013). "Min-max theory and the Willmore conjecture". Annals of Mathematics. 179 (2): 683–782. arXiv:. doi: 10.4007/annals.2014.179.2.6. S2CID  50742102.
172. ^ Guth, Larry; Katz, Nets Hawk (2015). "On the Erdos distinct distance problem in the plane". Annals of Mathematics. 181 (1): 155–190. arXiv:. doi:.
173. ^ Henle, Frederick V.; Henle, James M. "Squaring the Plane" (PDF). www.maa.org Mathematics Association of America. Archived (PDF) from the original on 2016-03-24. Retrieved 2016-03-18.
174. ^ Brock, Jeffrey F.; Canary, Richard D.; Minsky, Yair N. (2012). "The classification of Kleinian surface groups, II: The Ending Lamination Conjecture". Annals of Mathematics. 176 (1): 1–149. arXiv:. doi:.
175. ^ Connelly, Robert; Demaine, Erik D.; Rote, Günter (2003), "Straightening polygonal arcs and convexifying polygonal cycles" (PDF), Discrete & Computational Geometry, 30 (2): 205–239, doi:, MR  1931840, S2CID  40382145
176. ^ Shestakov, Ivan P.; Umirbaev, Ualbai U. (2004). "The tame and the wild automorphisms of polynomial rings in three variables". Journal of the American Mathematical Society. 17 (1): 197–227. doi: 10.1090/S0894-0347-03-00440-5. MR  2015334.
177. ^ Hutchings, Michael; Morgan, Frank; Ritoré, Manuel; Ros, Antonio (2002). "Proof of the double bubble conjecture". Annals of Mathematics. Second Series. 155 (2): 459–489. arXiv:. doi: 10.2307/3062123. hdl: 10481/32449. JSTOR  3062123. MR  1906593.
178. ^ Hales, Thomas C. (2001). "The Honeycomb Conjecture". Discrete & Computational Geometry. 25: 1–22. arXiv:. doi:.
179. ^ Ullmo, E (1998). "Positivité et Discrétion des Points Algébriques des Courbes". Annals of Mathematics. 147 (1): 167–179. arXiv:. doi: 10.2307/120987. JSTOR  120987. S2CID  119717506. Zbl  0934.14013.
180. ^ Zhang, S.-W. (1998). "Equidistribution of small points on abelian varieties". Annals of Mathematics. 147 (1): 159–165. doi: 10.2307/120986. JSTOR  120986.
181. ^ Hales, Thomas; Adams, Mark; Bauer, Gertrud; Dang, Dat Tat; Harrison, John; Hoang, Le Truong; Kaliszyk, Cezary; Magron, Victor; McLaughlin, Sean; Nguyen, Tat Thang; Nguyen, Quang Truong; Nipkow, Tobias; Obua, Steven; Pleso, Joseph; Rute, Jason; Solovyev, Alexey; Ta, Thi Hoai An; Tran, Nam Trung; Trieu, Thi Diep; Urban, Josef; Ky, Vu; Zumkeller, Roland (2017). "A formal proof of the Kepler conjecture". Forum of Mathematics, Pi. 5: e2. arXiv:. doi:.
182. ^ Hales, Thomas C.; McLaughlin, Sean (2010). "The dodecahedral conjecture". Journal of the American Mathematical Society. 23 (2): 299–344. arXiv:. Bibcode: 2010JAMS...23..299H. doi:.
183. ^ Dujmović, Vida; Eppstein, David; Hickingbotham, Robert; Morin, Pat; Wood, David R. (August 2021). "Stack-number is not bounded by queue-number". Combinatorica. 42 (2): 151–164. arXiv:. doi: 10.1007/s00493-021-4585-7. S2CID  226281691.
184. ^ Huang, C.; Kotzig, A.; Rosa, A. (1982). "Further results on tree labellings". Utilitas Mathematica. 21: 31–48. MR  0668845..
185. ^ Hartnett, Kevin (19 February 2020). "Rainbow Proof Shows Graphs Have Uniform Parts". Quanta Magazine. Retrieved 2020-02-29.
186. ^ Shitov, Yaroslav (1 September 2019). "Counterexamples to Hedetniemi's conjecture". Annals of Mathematics. 190 (2): 663–667. arXiv:. doi: 10.4007/annals.2019.190.2.6. JSTOR  10.4007/annals.2019.190.2.6. MR  3997132. S2CID  146120733. Zbl  1451.05087. Retrieved 19 July 2021.
187. ^ Abdollahi A., Zallaghi M. (2015). "Character sums for Cayley graphs". Communications in Algebra. 43 (12): 5159–5167. doi: 10.1080/00927872.2014.967398. S2CID  117651702.
188. ^ Chalopin, Jérémie; Gonçalves, Daniel (2009). "Every planar graph is the intersection graph of segments in the plane: extended abstract". In Mitzenmacher, Michael (ed.). Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009. ACM. pp. 631–638. doi: 10.1145/1536414.1536500.
189. ^ Aharoni, Ron; Berger, Eli (2009). "Menger's theorem for infinite graphs". Inventiones Mathematicae. 176 (1): 1–62. arXiv:. Bibcode: 2009InMat.176....1A. doi:.
190. ^ Seigel-Itzkovich, Judy (2008-02-08). "Russian immigrant solves math puzzle". The Jerusalem Post. Retrieved 2015-11-12.
191. ^ Diestel, Reinhard. "Graph Theory". www.flooved.com. Archived from the original on 2016-03-08. Retrieved 2016-03-18.{{ cite web}}: CS1 maint: unfit URL ( link)
192. ^ Chudnovsky, Maria; Robertson, Neil; Seymour, Paul; Thomas, Robin (2002). "The strong perfect graph theorem". Annals of Mathematics. 164: 51–229. arXiv:. Bibcode: 2002math.....12070C. doi: 10.4007/annals.2006.164.51. S2CID  119151552.
193. ^ Joel Friedman, "Sheaves on Graphs, Their Homological Invariants, and a Proof of the Hanna Neumann Conjecture: With an Appendix by Warren Dicks" Mem. Amer. Math. Soc., 233 (2015), no. 1100.
194. ^ Mineyev, Igor (2012). "Submultiplicativity and the Hanna Neumann conjecture". Annals of Mathematics. Second Series. 175 (1): 393–414. doi: 10.4007/annals.2012.175.1.11. MR  2874647.
195. ^ Namazi, Hossein; Souto, Juan (2012). "Non-realizability and ending laminations: Proof of the density conjecture". Acta Mathematica. 209 (2): 323–395. doi:.
196. ^ Bourgain, Jean; Ciprian, Demeter; Larry, Guth (2015). "Proof of the main conjecture in Vinogradov's Mean Value Theorem for degrees higher than three". Annals of Mathematics. 184 (2): 633–682. arXiv:. Bibcode: 2015arXiv151201565B. doi: 10.4007/annals.2016.184.2.7. hdl: 1721.1/115568. S2CID  43929329.
197. ^ Helfgott, Harald A. (2013). "Major arcs for Goldbach's theorem". arXiv: [ math.NT].
198. ^ Helfgott, Harald A. (2012). "Minor arcs for Goldbach's problem". arXiv: [ math.NT].
199. ^ Helfgott, Harald A. (2013). "The ternary Goldbach conjecture is true". arXiv: [ math.NT].
200. ^ Zhang, Yitang (2014-05-01). "Bounded gaps between primes". Annals of Mathematics. 179 (3): 1121–1174. doi: 10.4007/annals.2014.179.3.7. ISSN  0003-486X.
201. ^ "Bounded gaps between primes - Polymath Wiki". asone.ai. Retrieved 2021-08-27.
202. ^ Maynard, James (2015-01-01). "Small gaps between primes". Annals of Mathematics: 383–413. arXiv:. doi: 10.4007/annals.2015.181.1.7. ISSN  0003-486X. S2CID  55175056.
203. ^ Cilleruelo, Javier (2010). "Generalized Sidon sets". Advances in Mathematics. 225 (5): 2786–2807. doi:. hdl:. S2CID  7385280.
204. ^ Khare, Chandrashekhar; Wintenberger, Jean-Pierre (2009), "Serre's modularity conjecture (I)", Inventiones Mathematicae, 178 (3): 485–504, Bibcode: 2009InMat.178..485K, CiteSeerX , doi: 10.1007/s00222-009-0205-7, S2CID  14846347
205. ^ Khare, Chandrashekhar; Wintenberger, Jean-Pierre (2009), "Serre's modularity conjecture (II)", Inventiones Mathematicae, 178 (3): 505–586, Bibcode: 2009InMat.178..505K, CiteSeerX , doi: 10.1007/s00222-009-0206-6, S2CID  189820189
206. ^ "2011 Cole Prize in Number Theory" (PDF). Notices of the AMS. 58 (4): 610–611. ISSN  1088-9477. OCLC  34550461. Archived (PDF) from the original on 2015-11-06. Retrieved 2015-11-12.
207. ^ "Bombieri and Tao Receive King Faisal Prize" (PDF). Notices of the AMS. 57 (5): 642–643. May 2010. ISSN  1088-9477. OCLC  34550461. Archived (PDF) from the original on 2016-03-04. Retrieved 2016-03-18. Working with Ben Green, he proved there are arbitrarily long arithmetic progressions of prime numbers—a result now known as the Green–Tao theorem.
208. ^ Metsänkylä, Tauno (5 September 2003). "Catalan's conjecture: another old diophantine problem solved" (PDF). Bulletin of the American Mathematical Society. 41 (1): 43–57. doi: 10.1090/s0273-0979-03-00993-5. ISSN  0273-0979. Archived (PDF) from the original on 4 March 2016. Retrieved 13 November 2015. The conjecture, which dates back to 1844, was recently proven by the Swiss mathematician Preda Mihăilescu.
209. ^ Croot, Ernest S., III (2000). Unit Fractions. Ph.D. thesis. University of Georgia, Athens. Croot, Ernest S., III (2003). "On a coloring conjecture about unit fractions". Annals of Mathematics. 157 (2): 545–556. arXiv:. Bibcode: 2003math.....11421C. doi: 10.4007/annals.2003.157.545. S2CID  13514070.
210. ^ Lafforgue, Laurent (1998), "Chtoucas de Drinfeld et applications" [Drinfelʹd shtukas and applications], Documenta Mathematica (in French), II: 563–570, ISSN  1431-0635, MR  1648105, archived from the original on 2018-04-27, retrieved 2016-03-18
211. ^ Wiles, Andrew (1995). "Modular elliptic curves and Fermat's Last Theorem" (PDF). Annals of Mathematics. 141 (3): 443–551. CiteSeerX . doi: 10.2307/2118559. JSTOR  2118559. OCLC  37032255. Archived (PDF) from the original on 2011-05-10. Retrieved 2016-03-06.
212. ^ Taylor R, Wiles A (1995). "Ring theoretic properties of certain Hecke algebras". Annals of Mathematics. 141 (3): 553–572. CiteSeerX . doi: 10.2307/2118560. JSTOR  2118560. OCLC  37032255. Archived from the original on 16 September 2000.
213. ^ Lee, Choongbum (2017). "Ramsey numbers of degenerate graphs". Annals of Mathematics. 185 (3): 791–829. arXiv:. doi: 10.4007/annals.2017.185.3.2. S2CID  7974973.
214. ^ Lamb, Evelyn (26 May 2016). "Two-hundred-terabyte maths proof is largest ever". Nature. 534 (7605): 17–18. Bibcode: 2016Natur.534...17L. doi:. PMID  27251254.
215. ^ Heule, Marijn J. H.; Kullmann, Oliver; Marek, Victor W. (2016). "Solving and Verifying the Boolean Pythagorean Triples Problem via Cube-and-Conquer". In Creignou, N.; Le Berre, D. (eds.). Theory and Applications of Satisfiability Testing – SAT 2016. Lecture Notes in Computer Science. Vol. 9710. Springer, [Cham]. pp. 228–245. arXiv:. doi: 10.1007/978-3-319-40970-2_15. ISBN  978-3-319-40969-6. MR  3534782. S2CID  7912943.
216. ^ Linkletter, David (27 December 2019). "The 10 Biggest Math Breakthroughs of 2019". Popular Mechanics. Retrieved 20 June 2021.
217. ^ Piccirillo, Lisa (2020). "The Conway knot is not slice". Annals of Mathematics. 191 (2): 581–591. doi: 10.4007/annals.2020.191.2.5. S2CID  52398890.
218. ^ Klarreich, Erica (2020-05-19). "Graduate Student Solves Decades-Old Conway Knot Problem". Quanta Magazine. Retrieved 2022-08-17.
219. ^ Agol, Ian (2013). "The virtual Haken conjecture (with an appendix by Ian Agol, Daniel Groves, and Jason Manning)" (PDF). Documenta Mathematica. 18: 1045–1087. arXiv:.
220. ^ Brendle, Simon (2013). "Embedded minimal tori in ${\displaystyle S^{3}}$ and the Lawson conjecture". Acta Mathematica. 211 (2): 177–190. arXiv:. doi:.
221. ^ Kahn, Jeremy; Markovic, Vladimir (2015). "The good pants homology and the Ehrenpreis conjecture". Annals of Mathematics. 182 (1): 1–72. arXiv:. doi:.
222. ^ Austin, Tim (December 2013). "Rational group ring elements with kernels having irrational dimension". Proceedings of the London Mathematical Society. 107 (6): 1424–1448. arXiv:. Bibcode: 2009arXiv0909.2360A. doi: 10.1112/plms/pdt029. S2CID  115160094.
223. ^ Lurie, Jacob (2009). "On the classification of topological field theories". Current Developments in Mathematics. 2008: 129–280. arXiv:. Bibcode: 2009arXiv0905.0465L. doi: 10.4310/cdm.2008.v2008.n1.a3. S2CID  115162503.
224. ^ a b "Prize for Resolution of the Poincaré Conjecture Awarded to Dr. Grigoriy Perelman" (PDF) (Press release). Clay Mathematics Institute. March 18, 2010. Archived from the original on March 22, 2010. Retrieved November 13, 2015. The Clay Mathematics Institute hereby awards the Millennium Prize for resolution of the Poincaré conjecture to Grigoriy Perelman.
225. ^ Morgan, John; Tian, Gang (2008). "Completion of the Proof of the Geometrization Conjecture". arXiv: [ math.DG].
226. ^ Norio Iwase (1 November 1998). "Ganea's Conjecture on Lusternik-Schnirelmann Category". ResearchGate.
227. ^ Tao, Terence (2015). "The Erdős discrepancy problem". arXiv: [ math.CO].
228. ^ Duncan, John F. R.; Griffin, Michael J.; Ono, Ken (1 December 2015). "Proof of the umbral moonshine conjecture". Research in the Mathematical Sciences. 2 (1): 26. arXiv:. Bibcode: 2015arXiv150301472D. doi: 10.1186/s40687-015-0044-7. S2CID  43589605.
229. ^ Cheeger, Jeff; Naber, Aaron (2015). "Regularity of Einstein Manifolds and the Codimension 4 Conjecture". Annals of Mathematics. 182 (3): 1093–1165. arXiv:. doi:.
230. ^ Wolchover, Natalie (March 28, 2017). "A Long-Sought Proof, Found and Almost Lost". Quanta Magazine. Archived from the original on April 24, 2017. Retrieved May 2, 2017.
231. ^ Newman, Alantha; Nikolov, Aleksandar (2011). "A counterexample to Beck's conjecture on the discrepancy of three permutations". arXiv: [ cs.DM].
232. ^ Voevodsky, Vladimir (1 July 2011). "On motivic cohomology with Z/l-coefficients" (PDF). School of Mathematics Institute for Advanced Study Einstein Drive Princeton, NJ 08540: annals.math.princeton.edu ( Princeton University). pp. 401–438. Archived (PDF) from the original on 2016-03-27. Retrieved 2016-03-18.{{ cite web}}: CS1 maint: location ( link)
233. ^ Geisser, Thomas; Levine, Marc (2001). "The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky". Journal für die Reine und Angewandte Mathematik. 2001 (530): 55–103. doi: 10.1515/crll.2001.006. MR  1807268.
234. ^ Kahn, Bruno. "Algebraic K-Theory, Algebraic Cycles and Arithmetic Geometry" (PDF). webusers.imj-prg.fr. Archived (PDF) from the original on 2016-03-27. Retrieved 2016-03-18.
235. ^
236. ^ Mattman, Thomas W.; Solis, Pablo (2009). "A proof of the Kauffman-Harary Conjecture". Algebraic & Geometric Topology. 9 (4): 2027–2039. arXiv:. Bibcode: 2009arXiv0906.1612M. doi: 10.2140/agt.2009.9.2027. S2CID  8447495.
237. ^ Kahn, Jeremy; Markovic, Vladimir (2012). "Immersing almost geodesic surfaces in a closed hyperbolic three manifold". Annals of Mathematics. 175 (3): 1127–1190. arXiv:. doi:.
238. ^ Lu, Zhiqin (September 2011) [2007]. "Normal Scalar Curvature Conjecture and its applications". Journal of Functional Analysis. 261 (5): 1284–1308. arXiv:. doi:.
239. ^ Dencker, Nils (2006), "The resolution of the Nirenberg–Treves conjecture" (PDF), Annals of Mathematics, 163 (2): 405–444, doi: 10.4007/annals.2006.163.405, S2CID  16630732, archived (PDF) from the original on 2018-07-20, retrieved 2019-04-07
240. ^ "Research Awards". Clay Mathematics Institute. Archived from the original on 2019-04-07. Retrieved 2019-04-07.
241. ^ Lewis, A. S.; Parrilo, P. A.; Ramana, M. V. (2005). "The Lax conjecture is true". Proceedings of the American Mathematical Society. 133 (9): 2495–2499. doi: 10.1090/S0002-9939-05-07752-X. MR  2146191. S2CID  17436983.
242. ^ "Fields Medal – Ngô Bảo Châu". International Congress of Mathematicians 2010. ICM. 19 August 2010. Archived from the original on 24 September 2015. Retrieved 2015-11-12. Ngô Bảo Châu is being awarded the 2010 Fields Medal for his proof of the Fundamental Lemma in the theory of automorphic forms through the introduction of new algebro-geometric methods.
243. ^ Voevodsky, Vladimir (2003). "Reduced power operations in motivic cohomology" (PDF). Publications Mathématiques de l'IHÉS. 98: 1–57. arXiv:. CiteSeerX . doi: 10.1007/s10240-003-0009-z. S2CID  8172797. Archived from the original on 2017-07-28. Retrieved 2016-03-18.
244. ^ Baruch, Ehud Moshe (2003). "A proof of Kirillov's conjecture". Annals of Mathematics. Second Series. 158 (1): 207–252. doi: 10.4007/annals.2003.158.207. MR  1999922.
245. ^ Haas, Bertrand (2002). "A Simple Counterexample to Kouchnirenko's Conjecture" (PDF). Beiträge zur Algebra und Geometrie. 43 (1): 1–8. Archived (PDF) from the original on 2016-10-07. Retrieved 2016-03-18.
246. ^ Haiman, Mark (2001). "Hilbert schemes, polygraphs and the Macdonald positivity conjecture". Journal of the American Mathematical Society. 14 (4): 941–1006. doi: 10.1090/S0894-0347-01-00373-3. MR  1839919. S2CID  9253880.
247. ^ Auscher, Pascal; Hofmann, Steve; Lacey, Michael; McIntosh, Alan; Tchamitchian, Ph. (2002). "The solution of the Kato square root problem for second order elliptic operators on ${\displaystyle \mathbb {R} ^{n}}$". Annals of Mathematics. Second Series. 156 (2): 633–654. doi: 10.2307/3597201. JSTOR  3597201. MR  1933726.
248. ^ Barbieri-Viale, Luca; Rosenschon, Andreas; Saito, Morihiko (2003). "Deligne's Conjecture on 1-Motives". Annals of Mathematics. 158 (2): 593–633. arXiv:. doi:.
249. ^ Breuil, Christophe; Conrad, Brian; Diamond, Fred; Taylor, Richard (2001), "On the modularity of elliptic curves over Q: wild 3-adic exercises", Journal of the American Mathematical Society, 14 (4): 843–939, doi:, ISSN  0894-0347, MR  1839918
250. ^ Luca, Florian (2000). "On a conjecture of Erdős and Stewart" (PDF). Mathematics of Computation. 70 (234): 893–897. Bibcode: 2001MaCom..70..893L. doi: 10.1090/s0025-5718-00-01178-9. Archived (PDF) from the original on 2016-04-02. Retrieved 2016-03-18.
251. ^ Atiyah, Michael (2000). "The geometry of classical particles". In Yau, Shing-Tung (ed.). Papers dedicated to Atiyah, Bott, Hirzebruch, and Singer. Surveys in Differential Geometry. Vol. 7. Somerville, Massachusetts: International Press. pp. 1–15. doi: 10.4310/SDG.2002.v7.n1.a1. MR  1919420.
252. ^ Merel, Loïc (1996). ""Bornes pour la torsion des courbes elliptiques sur les corps de nombres" [Bounds for the torsion of elliptic curves over number fields]". Inventiones Mathematicae. 124 (1): 437–449. Bibcode: 1996InMat.124..437M. doi: 10.1007/s002220050059. MR  1369424. S2CID  3590991.
253. ^ Chen, Zhibo (1996). "Harary's conjectures on integral sum graphs". Discrete Mathematics. 160 (1–3): 241–244. doi:.