Equalities for combinations of sets
This article lists
mathematical properties and laws of
sets, involving the set-theoretic
operations of
union,
intersection, and
complementation and the
relations of set
equality and set
inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
The
binary operations of set union (
) and intersection (
) satisfy many identities. Several of these identities or "laws" have well established names.
Notation
Throughout this article, capital letters such as
and
will denote sets and
will denote the
power set of
If it is needed then unless indicated otherwise, it should be assumed that
denotes the
universe set, which means that all sets that are used in the formula are subsets of
In particular, the
complement of a set
will be denoted by
where unless indicated otherwise, it should be assumed that
denotes the complement of
in (the universe)
Typically, the set
will denote the L eft most set,
the M iddle set, and
the R ight most set.
For sets
and
define:

and

where the
symmetric difference 
is sometimes denoted by

and equals:
[1]
[2]

If

is a set that is understood (say from context, or because it is clearly stated) to be a subset of some other set

then the complement of a set

may be denoted by:

The definition of

may depend on context. For instance, had

been declared as a subset of

with the sets

and

not necessarily related to each other in any way, then

would likely mean

instead of
Finitely many sets
One subset involved
Assume
Identity:
Definition:
is called a
left identity element of a
binary operator
if
for all
and it is called a
right identity element of
if
for all
A left identity element that is also a right identity element if called an
identity element.
The empty set
is an identity element of binary union
and symmetric difference
and it is also a right identity element of set subtraction
![{\displaystyle {\begin{alignedat}{10}L\cap X&\;=\;&&L&\;=\;&X\cap L~~~~{\text{ where }}L\subseteq X\\[1.4ex]L\cup \varnothing &\;=\;&&L&\;=\;&\varnothing \cup L\\[1.4ex]L\,\triangle \varnothing &\;=\;&&L&\;=\;&\varnothing \,\triangle L\\[1.4ex]L\setminus \varnothing &\;=\;&&L\\[1.4ex]\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0aeaa7fe9553e9ae1df1d386d719c243c6b09196)
but

is not a left identity element of

since

so

if and only if
Idempotence
and
Nilpotence
:
![{\displaystyle {\begin{alignedat}{10}L\cup L&\;=\;&&L&&\quad {\text{ (Idempotence)}}\\[1.4ex]L\cap L&\;=\;&&L&&\quad {\text{ (Idempotence)}}\\[1.4ex]L\,\triangle \,L&\;=\;&&\varnothing &&\quad {\text{ (Nilpotence of index 2)}}\\[1.4ex]L\setminus L&\;=\;&&\varnothing &&\quad {\text{ (Nilpotence of index 2)}}\\[1.4ex]\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/705f7193dfc1f2e28f9bca7b4311dbb632cc4a55)
Domination/
Zero element:
![{\displaystyle {\begin{alignedat}{10}X\cup L&\;=\;&&X&\;=\;&L\cup X~~~~{\text{ where }}L\subseteq X\\[1.4ex]\varnothing \cap L&\;=\;&&\varnothing &\;=\;&L\cap \varnothing \\[1.4ex]\varnothing \times L&\;=\;&&\varnothing &\;=\;&L\times \varnothing \\[1.4ex]\varnothing \setminus L&\;=\;&&\varnothing &\;\;&\\[1.4ex]\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d08faf88ece3d9f5c2996231d5cdb74b83b87f01)
but

so
Double complement or
involution law:
![{\displaystyle {\begin{alignedat}{10}X\setminus (X\setminus L)&=L&&\qquad {\text{ Also written }}\quad &&\left(L^{\complement }\right)^{\complement }=L&&\quad &&{\text{ where }}L\subseteq X\quad {\text{ (Double complement/Involution law)}}\\[1.4ex]\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4a3fffc39ab1bea50c589b5eb9625baad499db49)



![{\displaystyle {\begin{alignedat}{10}L\,\cup (X\setminus L)&=X&&\qquad {\text{ Also written }}\quad &&L\cup L^{\complement }=X&&\quad &&{\text{ where }}L\subseteq X\\[1.4ex]L\,\triangle (X\setminus L)&=X&&\qquad {\text{ Also written }}\quad &&L\,\triangle L^{\complement }=X&&\quad &&{\text{ where }}L\subseteq X\\[1.4ex]L\,\cap (X\setminus L)&=\varnothing &&\qquad {\text{ Also written }}\quad &&L\cap L^{\complement }=\varnothing &&\quad &&\\[1.4ex]\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7cf2facd5309c0001c5c81e5ea29f700189fb905)
![{\displaystyle {\begin{alignedat}{10}X\setminus \varnothing &=X&&\qquad {\text{ Also written }}\quad &&\varnothing ^{\complement }=X&&\quad &&{\text{ (Complement laws for the empty set))}}\\[1.4ex]X\setminus X&=\varnothing &&\qquad {\text{ Also written }}\quad &&X^{\complement }=\varnothing &&\quad &&{\text{ (Complement laws for the universe set)}}\\[1.4ex]\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e545270f10f2103aaadde7bb370a16d90af907a9)
Two sets involved
In the left hand sides of the following identities,
is the L eft most set and
is the R ight most set.
Assume both
are subsets of some universe set
Formulas for binary set operations ⋂, ⋃, \, and ∆
In the left hand sides of the following identities,
is the L eft most set and
is the R ight most set. Whenever necessary, both
should be assumed to be subsets of some universe set
so that




De Morgan's laws
De Morgan's laws state that for
![{\displaystyle {\begin{alignedat}{10}X\setminus (L\cap R)&=(X\setminus L)\cup (X\setminus R)&&\qquad {\text{ Also written }}\quad &&(L\cap R)^{\complement }=L^{\complement }\cup R^{\complement }&&\quad &&{\text{ (De Morgan's law)}}\\[1.4ex]X\setminus (L\cup R)&=(X\setminus L)\cap (X\setminus R)&&\qquad {\text{ Also written }}\quad &&(L\cup R)^{\complement }=L^{\complement }\cap R^{\complement }&&\quad &&{\text{ (De Morgan's law)}}\\[1.4ex]\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/811747bd165e3a312308bba37cf04b97e362c7bb)
Commutativity
Unions, intersection, and symmetric difference are
commutative operations:
![{\displaystyle {\begin{alignedat}{10}L\cup R&\;=\;&&R\cup L&&\quad {\text{ (Commutativity)}}\\[1.4ex]L\cap R&\;=\;&&R\cap L&&\quad {\text{ (Commutativity)}}\\[1.4ex]L\,\triangle R&\;=\;&&R\,\triangle L&&\quad {\text{ (Commutativity)}}\\[1.4ex]\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b5ed68a58a9c3712c81dee0521eafb325b2881d5)
Set subtraction is not commutative. However, the commutativity of set subtraction can be characterized: from
it follows that:

Said differently, if distinct symbols always represented distinct sets, then the
only true formulas of the form

that could be written would be those involving a single symbol; that is, those of the form:

But such formulas are necessarily true for
every binary operation

(because

must hold by definition of
equality), and so in this sense, set subtraction is as diametrically opposite to being commutative as is possible for a binary operation.
Set subtraction is also neither
left alternative nor
right alternative; instead,

if and only if

if and only if

Set subtraction is
quasi-commutative and satisfies the
Jordan identity.
Other identities involving two sets
Absorption laws:
![{\displaystyle {\begin{alignedat}{4}L\cup (L\cap R)&\;=\;&&L&&\quad {\text{ (Absorption)}}\\[1.4ex]L\cap (L\cup R)&\;=\;&&L&&\quad {\text{ (Absorption)}}\\[1.4ex]\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bc3e4824a16b253d26d4f3e847e4a5a1dab173df)
Other properties
![{\displaystyle {\begin{alignedat}{10}L\setminus R&=L\cap (X\setminus R)&&\qquad {\text{ Also written }}\quad &&L\setminus R=L\cap R^{\complement }&&\quad &&{\text{ where }}L,R\subseteq X\\[1.4ex]X\setminus (L\setminus R)&=(X\setminus L)\cup R&&\qquad {\text{ Also written }}\quad &&(L\setminus R)^{\complement }=L^{\complement }\cup R&&\quad &&{\text{ where }}R\subseteq X\\[1.4ex]L\setminus R&=(X\setminus R)\setminus (X\setminus L)&&\qquad {\text{ Also written }}\quad &&L\setminus R=R^{\complement }\setminus L^{\complement }&&\quad &&{\text{ where }}L,R\subseteq X\\[1.4ex]\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0d907808787ff660fb08b5966a8201cd48fa0f15)
Intervals:


Subsets ⊆ and supersets ⊇
The following statements are equivalent for any






(that is,
)
The following statements are equivalent for any

- There exists some

Set equality
The following statements are equivalent:



- If
then
if and only if 
- Uniqueness of complements: If
then 
Empty set
A set
is
empty if the sentence
is true, where the notation
is shorthand for
If
is any set then the following are equivalent:
is not empty, meaning that the sentence
is true (literally, the
logical negation of "
is empty" holds true).
- (In
classical mathematics)
is
inhabited, meaning:
- In
constructive mathematics, "not empty" and "inhabited" are not equivalent: every inhabited set is not empty but the converse is not always guaranteed; that is, in constructive mathematics, a set
that is not empty (where by definition, "
is empty" means that the statement
is true) might not have an
inhabitant (which is an
such that
).
for some set 
If
is any set then the following are equivalent:
is empty (
), meaning: 
for every set 
for every set 
for some/every set 

Given any

Moreover,

Meets, Joins, and lattice properties
Inclusion is a
partial order:
Explicitly, this means that
inclusion
which is a
binary operation, has the following three properties:
-
Reflexivity:

-
Antisymmetry:

-
Transitivity:

The following proposition says that for any set
the
power set of
ordered by inclusion, is a
bounded lattice, and hence together with the distributive and complement laws above, show that it is a
Boolean algebra.
Existence of a
least element and a
greatest element:

Joins/supremums exist:

The union
is the join/supremum of
and
with respect to
because:
and
and
- if
is a set such that
and
then 
The intersection
is the join/supremum of
and
with respect to
Meets/infimums exist:

The intersection
is the meet/infimum of
and
with respect to
because:
- if
and
and
- if
is a set such that
and
then 
The union
is the meet/infimum of
and
with respect to
Other inclusion properties:


- If
then 
- If
and
then 
Three sets involved
In the left hand sides of the following identities,
is the L eft most set,
is the M iddle set, and
is the R ight most set.
Precedence rules
There is no universal agreement on the
order of precedence of the basic set operators.
Nevertheless, many authors use
precedence rules for set operators, although these rules vary with the author.
One common convention is to associate intersection
with
logical conjunction (and)
and associate union
with
logical disjunction (or)
and then transfer the
precedence of these logical operators (where
has precedence over
) to these set operators, thereby giving
precedence over
So for example,
would mean
since it would be associated with the logical statement
and similarly,
would mean
since it would be associated with
Sometimes, set complement (subtraction)
is also associated with
logical complement (not)
in which case it will have the highest precedence.
More specifically,
is rewritten
so that for example,
would mean
since it would be rewritten as the logical statement
which is equal to
For another example, because
means
which is equal to both
and
(where
was rewritten as
), the formula
would refer to the set
moreover, since
this set is also equal to
(other set identities can similarly be deduced from
propositional calculus
identities in this way).
However, because set subtraction is not associative
a formula such as
would be ambiguous; for this reason, among others, set subtraction is often not assigned any precedence at all.
Symmetric difference
is sometimes associated with
exclusive or (xor)
(also sometimes denoted by
), in which case if the order of precedence from highest to lowest is
then the order of precedence (from highest to lowest) for the set operators would be
There is no universal agreement on the precedence of exclusive disjunction
with respect to the other logical connectives, which is why symmetric difference
is not often assigned a precedence.
Associativity
Definition: A
binary operator
is called
associative if
always holds.
The following set operators are associative:
\cap R&\;=\;\;&&L\cap (M\cap R)\\[1.4ex](L\,\triangle M)\,\triangle R&\;=\;\;&&L\,\triangle (M\,\triangle R)\\[1.4ex]\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0a5b12c5b3ca0a1d1ce004d11c331da4a71254f2)
For set subtraction, instead of associativity, only the following is always guaranteed:

where equality holds if and only if

(this condition does not depend on

). Thus

if and only if

where the only difference between the left and right hand side set equalities is that the locations of

have been swapped.
Distributivity
Definition: If
are
binary operators then
left distributes over
if

while
right distributes over 
if

The operator
distributes over 
if it both left distributes and right distributes over

In the definitions above, to transform one side to the other, the innermost operator (the operator inside the parentheses) becomes the outermost operator and the outermost operator becomes the innermost operator.
Right distributivity:
\,\cup \,R~&~~=~~&&(L\,\cup \,R)\,&&\cup \,&&(M\,\cup \,R)\qquad &&{\text{ (Right-distributivity of }}\,\cup \,{\text{ over }}\,\cup \,{\text{)}}\\[1.4ex](L\,\cup \,M)\,\cap \,R~&~~=~~&&(L\,\cap \,R)\,&&\cup \,&&(M\,\cap \,R)\qquad &&{\text{ (Right-distributivity of }}\,\cap \,{\text{ over }}\,\cup \,{\text{)}}\\[1.4ex](L\,\cap \,M)\,\cap \,R~&~~=~~&&(L\,\cap \,R)\,&&\cap \,&&(M\,\cap \,R)\qquad &&{\text{ (Right-distributivity of }}\,\cap \,{\text{ over }}\,\cap \,{\text{)}}\\[1.4ex](L\,\triangle \,M)\,\cap \,R~&~~=~~&&(L\,\cap \,R)\,&&\triangle \,&&(M\,\cap \,R)\qquad &&{\text{ (Right-distributivity of }}\,\cap \,{\text{ over }}\,\triangle \,{\text{)}}\\[1.4ex](L\,\cap \,M)\,\times \,R~&~~=~~&&(L\,\times \,R)\,&&\cap \,&&(M\,\times \,R)\qquad &&{\text{ (Right-distributivity of }}\,\times \,{\text{ over }}\,\cap \,{\text{)}}\\[1.4ex](L\,\cup \,M)\,\times \,R~&~~=~~&&(L\,\times \,R)\,&&\cup \,&&(M\,\times \,R)\qquad &&{\text{ (Right-distributivity of }}\,\times \,{\text{ over }}\,\cup \,{\text{)}}\\[1.4ex](L\,\setminus \,M)\,\times \,R~&~~=~~&&(L\,\times \,R)\,&&\setminus \,&&(M\,\times \,R)\qquad &&{\text{ (Right-distributivity of }}\,\times \,{\text{ over }}\,\setminus \,{\text{)}}\\[1.4ex](L\,\cup \,M)\,\setminus \,R~&~~=~~&&(L\,\setminus \,R)\,&&\cup \,&&(M\,\setminus \,R)\qquad &&{\text{ (Right-distributivity of }}\,\setminus \,{\text{ over }}\,\cup \,{\text{)}}\\[1.4ex](L\,\cap \,M)\,\setminus \,R~&~~=~~&&(L\,\setminus \,R)\,&&\cap \,&&(M\,\setminus \,R)\qquad &&{\text{ (Right-distributivity of }}\,\setminus \,{\text{ over }}\,\cap \,{\text{)}}\\[1.4ex](L\,\triangle \,M)\,\setminus \,R~&~~=~~&&(L\,\setminus \,R)&&\,\triangle \,&&(M\,\setminus \,R)\qquad &&{\text{ (Right-distributivity of }}\,\setminus \,{\text{ over }}\,\triangle \,{\text{)}}\\[1.4ex](L\,\setminus \,M)\,\setminus \,R~&~~=~~&&(L\,\setminus \,R)&&\,\setminus \,&&(M\,\setminus \,R)\qquad &&{\text{ (Right-distributivity of }}\,\setminus \,{\text{ over }}\,\setminus \,{\text{)}}\\[1.4ex]~&~~=~~&&~~\;~~\;~~\;~L&&\,\setminus \,&&(M\cup R)\\[1.4ex]\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d2bfbfb55ce39c9a0749a10762761093689bec3b)
Left distributivity:
![{\displaystyle {\begin{alignedat}{5}L\cup (M\cap R)&\;=\;\;&&(L\cup M)\cap (L\cup R)\qquad &&{\text{ (Left-distributivity of }}\,\cup \,{\text{ over }}\,\cap \,{\text{)}}\\[1.4ex]L\cup (M\cup R)&\;=\;\;&&(L\cup M)\cup (L\cup R)&&{\text{ (Left-distributivity of }}\,\cup \,{\text{ over }}\,\cup \,{\text{)}}\\[1.4ex]L\cap (M\cup R)&\;=\;\;&&(L\cap M)\cup (L\cap R)&&{\text{ (Left-distributivity of }}\,\cap \,{\text{ over }}\,\cup \,{\text{)}}\\[1.4ex]L\cap (M\cap R)&\;=\;\;&&(L\cap M)\cap (L\cap R)&&{\text{ (Left-distributivity of }}\,\cap \,{\text{ over }}\,\cap \,{\text{)}}\\[1.4ex]L\cap (M\,\triangle \,R)&\;=\;\;&&(L\cap M)\,\triangle \,(L\cap R)&&{\text{ (Left-distributivity of }}\,\cap \,{\text{ over }}\,\triangle \,{\text{)}}\\[1.4ex]L\times (M\cap R)&\;=\;\;&&(L\times M)\cap (L\times R)&&{\text{ (Left-distributivity of }}\,\times \,{\text{ over }}\,\cap \,{\text{)}}\\[1.4ex]L\times (M\cup R)&\;=\;\;&&(L\times M)\cup (L\times R)&&{\text{ (Left-distributivity of }}\,\times \,{\text{ over }}\,\cup \,{\text{)}}\\[1.4ex]L\times (M\,\setminus R)&\;=\;\;&&(L\times M)\,\setminus (L\times R)&&{\text{ (Left-distributivity of }}\,\times \,{\text{ over }}\,\setminus \,{\text{)}}\\[1.4ex]\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2bfe78b5950dab3d7254b89a31f94db0505058fa)
Distributivity and symmetric difference ∆
Intersection distributes over symmetric difference:
![{\displaystyle {\begin{alignedat}{5}L\,\cap \,(M\,\triangle \,R)~&~~=~~&&(L\,\cap \,M)\,\triangle \,(L\,\cap \,R)~&&~\\[1.4ex]\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4c8b7f75a568095f49e9270640d305e77cfa181e)
![{\displaystyle {\begin{alignedat}{5}(L\,\triangle \,M)\,\cap \,R~&~~=~~&&(L\,\cap \,R)\,\triangle \,(M\,\cap \,R)~&&~\\[1.4ex]\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/65f8fa524053a207649f0f3391838e4faf8fac5c)
Union does not distribute over symmetric difference because only the following is guaranteed in general:
![{\displaystyle {\begin{alignedat}{5}L\cup (M\,\triangle \,R)~~{\color {red}{\supseteq }}~~\color {black}{\,}(L\cup M)\,\triangle \,(L\cup R)~&~=~&&(M\,\triangle \,R)\,\setminus \,L&~=~&&(M\,\setminus \,L)\,\triangle \,(R\,\setminus \,L)\\[1.4ex]\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/349cda034c0b441a206e756b99f908cb73d2c69f)
Symmetric difference does not distribute over itself:

and in general, for any sets

(where

represents

),

might not be a subset, nor a superset, of

(and the same is true for

).
Distributivity and set subtraction \
Failure of set subtraction to left distribute:
Set subtraction is right distributive over itself. However, set subtraction is not left distributive over itself because only the following is guaranteed in general:
![{\displaystyle {\begin{alignedat}{5}L\,\setminus \,(M\,\setminus \,R)&~~{\color {red}{\supseteq }}~~&&\color {black}{\,}(L\,\setminus \,M)\,\setminus \,(L\,\setminus \,R)~~=~~L\cap R\,\setminus \,M\\[1.4ex]\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/db7c063843e71af6e8f9da1c2abeadf520ecd84f)
where equality holds if and only if

which happens if and only if
For symmetric difference, the sets
and
are always disjoint.
So these two sets are equal if and only if they are both equal to
Moreover,
if and only if
To investigate the left distributivity of set subtraction over unions or intersections, consider how the sets involved in (both of) De Morgan's laws are all related:
![{\displaystyle {\begin{alignedat}{5}(L\,\setminus \,M)\,\cap \,(L\,\setminus \,R)~~=~~L\,\setminus \,(M\,\cup \,R)~&~~{\color {red}{\subseteq }}~~&&\color {black}{\,}L\,\setminus \,(M\,\cap \,R)~~=~~(L\,\setminus \,M)\,\cup \,(L\,\setminus \,R)\\[1.4ex]\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e4c6aba62f06ad02f82a7d6dac1da487173c5648)
always holds in general but equality is not guaranteed.
Equality holds if and only if

which happens if and only if
This observation about De Morgan's laws shows that
is not left distributive over
or
because only the following are guaranteed in general:
![{\displaystyle {\begin{alignedat}{5}L\,\setminus \,(M\,\cup \,R)~&~~{\color {red}{\subseteq }}~~&&\color {black}{\,}(L\,\setminus \,M)\,\cup \,(L\,\setminus \,R)~~=~~L\,\setminus \,(M\,\cap \,R)\\[1.4ex]\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b8f3ba256ad5b3a3a180a8645df2bce25846c8d7)
![{\displaystyle {\begin{alignedat}{5}L\,\setminus \,(M\,\cap \,R)~&~~{\color {red}{\supseteq }}~~&&\color {black}{\,}(L\,\setminus \,M)\,\cap \,(L\,\setminus \,R)~~=~~L\,\setminus \,(M\,\cup \,R)\\[1.4ex]\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bd74c1e3056f4748926190cfd6f398905b3ef2c2)
where equality holds for one (or equivalently, for both) of the above two inclusion formulas if and only if
The following statements are equivalent:


that is,
left distributes over
for these three particular sets
that is,
left distributes over
for these three particular sets



and 


Quasi-commutativity:

always holds but in general,

However,

if and only if

if and only if
Set subtraction complexity: To manage the many identities involving set subtraction, this section is divided based on where the set subtraction operation and parentheses are located on the left hand side of the identity. The great variety and (relative) complexity of formulas involving set subtraction (compared to those without it) is in part due to the fact that unlike
and
set subtraction is neither associative nor commutative and it also is not left distributive over
or even over itself.
Two set subtractions
Set subtraction is not associative in general:

since only the following is always guaranteed:

(L\M)\R
![{\displaystyle {\begin{alignedat}{4}(L\setminus M)\setminus R&=&&L\setminus (M\cup R)\\[0.6ex]&=(&&L\setminus R)\setminus M\\[0.6ex]&=(&&L\setminus M)\cap (L\setminus R)\\[0.6ex]&=(&&L\setminus R)\setminus M\\[0.6ex]&=(&&L\,\setminus \,R)\,\setminus \,(M\,\setminus \,R)\\[1.4ex]\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7ebae8d027960a2d297feeb2d855f87b2607643a)
L\(M\R)
![{\displaystyle {\begin{alignedat}{4}L\setminus (M\setminus R)&=(L\setminus M)\cup (L\cap R)\\[1.4ex]\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cc457d405dc4c1bd3ca998e56d74dd6e183f9818)
- If

with equality if and only if 
One set subtraction
(L\M) ⁎ R
Set subtraction on the left, and parentheses on the left


![{\displaystyle {\begin{alignedat}{5}(L\,\setminus \,M)\,\cap \,(L\,\setminus \,R)~~=~~L\,\setminus \,(M\,\cup \,R)~&~~{\color {red}{\subseteq }}~~&&\color {black}{\,}L\,\setminus \,(M\,\cap \,R)~~=~~(L\,\setminus \,M)\,\cup \,(L\,\setminus \,R)\\[1.4ex]\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e4c6aba62f06ad02f82a7d6dac1da487173c5648)


L\(M ⁎ R)
Set subtraction on the left, and parentheses on the right


where the above two sets that are the subjects of
De Morgan's laws always satisfy

(L ⁎ M)\R
Set subtraction on the right, and parentheses on the left



L ⁎ (M\R)
Set subtraction on the right, and parentheses on the right
![{\displaystyle {\begin{alignedat}{3}L\cup (M\setminus R)&=&&&&L&&\cup \;&&(M\setminus (R\cup L))&&~~~{\text{ (the outermost union is disjoint) }}\\&=[&&(&&L\setminus M)&&\cup \;&&(R\cap L)]\cup (M\setminus R)&&~~~{\text{ (the outermost union is disjoint) }}\\&=&&(&&L\setminus (M\cup R))\;&&\;\cup &&(R\cap L)\,\,\cup (M\setminus R)&&~~~{\text{ (the three outermost sets are pairwise disjoint) }}\\\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b1156870ea28978017959bdff3936e706d7b72fa)


Three operations on three sets
(L • M) ⁎ (M • R)
Operations of the form
:
&\,\cap \,&&(&&M\cup R)&&&&\;=\;\;&&M\cap (L\cup R)\\[1.4ex](L\cup M)&\,\setminus \,&&(&&M\cup R)&&&&\;=\;\;&&L\,\setminus \,(M\cup R)\\[1.4ex](L\cup M)&\,\triangle \,&&(&&M\cup R)&&&&\;=\;\;&&(L\,\setminus \,(M\cup R))\,\cup \,(R\,\setminus \,(L\cup M))\\[1.4ex]&\,&&\,&&\,&&&&\;=\;\;&&(L\,\triangle \,R)\,\setminus \,M\\[1.4ex](L\cap M)&\,\cup \,&&(&&M\cap R)&&&&\;=\;\;&&M\cup (L\cap R)\\[1.4ex](L\cap M)&\,\cap \,&&(&&M\cap R)&&&&\;=\;\;&&L\cap M\cap R\\[1.4ex](L\cap M)&\,\setminus \,&&(&&M\cap R)&&&&\;=\;\;&&(L\cap M)\,\setminus \,R\\[1.4ex](L\cap M)&\,\triangle \,&&(&&M\cap R)&&&&\;=\;\;&&[(L\,\cap M)\cup (M\,\cap R)]\,\setminus \,(L\,\cap M\,\cap R)\\[1.4ex](L\,\setminus M)&\,\cup \,&&(&&M\,\setminus R)&&&&\;=\;\;&&(L\,\cup M)\,\setminus (M\,\cap \,R)\\[1.4ex](L\,\setminus M)&\,\cap \,&&(&&M\,\setminus R)&&&&\;=\;\;&&\varnothing \\[1.4ex](L\,\setminus M)&\,\setminus \,&&(&&M\,\setminus R)&&&&\;=\;\;&&L\,\setminus M\\[1.4ex](L\,\setminus M)&\,\triangle \,&&(&&M\,\setminus R)&&&&\;=\;\;&&(L\,\setminus M)\cup (M\,\setminus R)\\[1.4ex]&\,&&\,&&\,&&&&\;=\;\;&&(L\,\cup M)\setminus (M\,\cap R)\\[1.4ex](L\,\triangle \,M)&\,\cup \,&&(&&M\,\triangle \,R)&&&&\;=\;\;&&(L\,\cup \,M\,\cup \,R)\,\setminus \,(L\,\cap \,M\,\cap \,R)\\[1.4ex](L\,\triangle \,M)&\,\cap \,&&(&&M\,\triangle \,R)&&&&\;=\;\;&&((L\,\cap \,R)\,\setminus \,M)\,\cup \,(M\,\setminus \,(L\,\cup \,R))\\[1.4ex](L\,\triangle \,M)&\,\setminus \,&&(&&M\,\triangle \,R)&&&&\;=\;\;&&(L\,\setminus \,(M\,\cup \,R))\,\cup \,((M\,\cap \,R)\,\setminus \,L)\\[1.4ex](L\,\triangle \,M)&\,\triangle \,&&(&&M\,\triangle \,R)&&&&\;=\;\;&&L\,\triangle \,R\\[1.7ex]\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b44049f1cbe6779ca50e076ed67cf4c69706273d)
(L • M) ⁎ (R\M)
Operations of the form
:
&\,\cap \,&&(&&R\,\setminus \,M)&&&&\;=\;\;&&(L\cap R)\,\setminus \,M\\[1.4ex](L\cup M)&\,\setminus \,&&(&&R\,\setminus \,M)&&&&\;=\;\;&&M\cup (L\,\setminus \,R)\\[1.4ex](L\cup M)&\,\triangle \,&&(&&R\,\setminus \,M)&&&&\;=\;\;&&M\cup (L\,\triangle \,R)\\[1.4ex](L\cap M)&\,\cup \,&&(&&R\,\setminus \,M)&&&&\;=\;\;&&[L\cap (M\cup R)]\cup [R\,\setminus \,(L\cup M)]\qquad {\text{ (disjoint union)}}\\[1.4ex]&\,&&\,&&\,&&&&\;=\;\;&&(L\cap M)\,\triangle \,(R\,\setminus \,M)\\[1.4ex](L\cap M)&\,\cap \,&&(&&R\,\setminus \,M)&&&&\;=\;\;&&\varnothing \\[1.4ex](L\cap M)&\,\setminus \,&&(&&R\,\setminus \,M)&&&&\;=\;\;&&L\cap M\\[1.4ex](L\cap M)&\,\triangle \,&&(&&R\,\setminus \,M)&&&&\;=\;\;&&(L\cap M)\cup (R\,\setminus \,M)\qquad {\text{ (disjoint union)}}\\[1.4ex](L\,\setminus \,M)&\,\cup \,&&(&&R\,\setminus \,M)&&&&\;=\;\;&&L\cup R\,\setminus \,M\\[1.4ex](L\,\setminus \,M)&\,\cap \,&&(&&R\,\setminus \,M)&&&&\;=\;\;&&(L\cap R)\,\setminus \,M\\[1.4ex](L\,\setminus \,M)&\,\setminus \,&&(&&R\,\setminus \,M)&&&&\;=\;\;&&L\,\setminus \,(M\cup R)\\[1.4ex](L\,\setminus \,M)&\,\triangle \,&&(&&R\,\setminus \,M)&&&&\;=\;\;&&(L\,\triangle \,R)\,\setminus \,M\\[1.4ex](L\,\triangle \,M)&\,\cup \,&&(&&R\,\setminus \,M)&&&&\;=\;\;&&(L\cup M\cup R)\,\setminus \,(L\cap M)\\[1.4ex](L\,\triangle \,M)&\,\cap \,&&(&&R\,\setminus \,M)&&&&\;=\;\;&&(L\cap R)\,\setminus \,M\\[1.4ex](L\,\triangle \,M)&\,\setminus \,&&(&&R\,\setminus \,M)&&&&\;=\;\;&&[L\,\setminus \,(M\cup R)]\cup (M\,\setminus \,L)\qquad {\text{ (disjoint union)}}\\[1.4ex]&\,&&\,&&\,&&&&\;=\;\;&&(L\,\triangle \,M)\setminus (L\,\cap R)\\[1.4ex](L\,\triangle \,M)&\,\triangle \,&&(&&R\,\setminus \,M)&&&&\;=\;\;&&L\,\triangle \,(M\cup R)\\[1.7ex]\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/373f4d35b8108e5f9cd9f0c919312463d8c10f77)
(L\M) ⁎ (L\R)
Operations of the form
:
&\,\cap \,&&(&&L\,\setminus R)&&\;=\;&&L\,\setminus \,(M\,\cup \,R)\\[1.4ex](L\,\setminus M)&\,\setminus \,&&(&&L\,\setminus R)&&\;=\;&&(L\,\cap \,R)\,\setminus \,M\\[1.4ex](L\,\setminus M)&\,\triangle \,&&(&&L\,\setminus R)&&\;=\;&&L\,\cap \,(M\,\triangle \,R)\\[1.4ex]&\,&&\,&&\,&&\;=\;&&(L\cap M)\,\triangle \,(L\cap R)\\[1.4ex]\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4c798ad82f19ed780bed3af5bae021b27c3eef94)
Other simplifications
Other properties:

- If
then 

- If
then 
if and only if for any
belongs to at most two of the sets 
Cartesian products ⨯ of finitely many sets
Binary ⋂ of finite ⨯


Binary ⋃ of finite ⨯
![{\displaystyle {\begin{alignedat}{9}\left(L\times R\right)~\cup ~\left(L_{2}\times R_{2}\right)~&=~\left[\left(L\setminus L_{2}\right)\times R\right]~\cup ~\left[\left(L_{2}\setminus L\right)\times R_{2}\right]~\cup ~\left[\left(L\cap L_{2}\right)\times \left(R\cup R_{2}\right)\right]\\[0.5ex]~&=~\left[L\times \left(R\setminus R_{2}\right)\right]~\cup ~\left[L_{2}\times \left(R_{2}\setminus R\right)\right]~\cup ~\left[\left(L\cup L_{2}\right)\times \left(R\cap R_{2}\right)\right]\\\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cf63e7f01d4477b693e8f78ab4110b885c38f4f9)
Difference \ of finite ⨯
![{\displaystyle {\begin{alignedat}{9}\left(L\times R\right)~\setminus ~\left(L_{2}\times R_{2}\right)~&=~\left[\left(L\,\setminus \,L_{2}\right)\times R\right]~\cup ~\left[L\times \left(R\,\setminus \,R_{2}\right)\right]\\\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/094f01cb93cc5132c0a81c5a634c25d938fda92a)
and
![{\displaystyle (L\times M\times R)~\setminus ~\left(L_{2}\times M_{2}\times R_{2}\right)~=~\left[\left(L\,\setminus \,L_{2}\right)\times M\times R\right]~\cup ~\left[L\times \left(M\,\setminus \,M_{2}\right)\times R\right]~\cup ~\left[L\times M\times \left(R\,\setminus \,R_{2}\right)\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/56184b2448aa8e903e2ade0edc6550eb08a2facd)
Finite ⨯ of differences \
![{\displaystyle \left(L\,\setminus \,L_{2}\right)\times \left(R\,\setminus \,R_{2}\right)~=~\left(L\times R\right)\,\setminus \,\left[\left(L_{2}\times R\right)\cup \left(L\times R_{2}\right)\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1d9e9450a36b779f8ea670c563e4a2751dae842b)
![{\displaystyle \left(L\,\setminus \,L_{2}\right)\times \left(M\,\setminus \,M_{2}\right)\times \left(R\,\setminus \,R_{2}\right)~=~\left(L\times M\times R\right)\,\setminus \,\left[\left(L_{2}\times M\times R\right)\cup \left(L\times M_{2}\times R\right)\cup \left(L\times M\times R_{2}\right)\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5d1f20f09f358a8f4f435595394bd4b5165e74ee)
Symmetric difference ∆ and finite ⨯
![{\displaystyle L\times \left(R\,\triangle \,R_{2}\right)~=~\left[L\times \left(R\,\setminus \,R_{2}\right)\right]\,\cup \,\left[L\times \left(R_{2}\,\setminus \,R\right)\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/383cf2c7f20c98cdc6a350aebf96372f4a3c83ba)
![{\displaystyle \left(L\,\triangle \,L_{2}\right)\times R~=~\left[\left(L\,\setminus \,L_{2}\right)\times R\right]\,\cup \,\left[\left(L_{2}\,\setminus \,L\right)\times R\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/06b2a1fc9884849b9bcc9f61ef4919477e8e6e97)
![{\displaystyle {\begin{alignedat}{4}\left(L\,\triangle \,L_{2}\right)\times \left(R\,\triangle \,R_{2}\right)~&=~&&&&\,\left[\left(L\cup L_{2}\right)\times \left(R\cup R_{2}\right)\right]\;\setminus \;\left[\left(\left(L\cap L_{2}\right)\times R\right)\;\cup \;\left(L\times \left(R\cap R_{2}\right)\right)\right]\\[0.7ex]&=~&&&&\,\left[\left(L\,\setminus \,L_{2}\right)\times \left(R_{2}\,\setminus \,R\right)\right]\,\cup \,\left[\left(L_{2}\,\setminus \,L\right)\times \left(R_{2}\,\setminus \,R\right)\right]\,\cup \,\left[\left(L\,\setminus \,L_{2}\right)\times \left(R\,\setminus \,R_{2}\right)\right]\,\cup \,\left[\left(L_{2}\,\setminus \,L\right)\cup \left(R\,\setminus \,R_{2}\right)\right]\\\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6316373964c01c3cd9a84897748360bb306752c1)
![{\displaystyle {\begin{alignedat}{4}\left(L\,\triangle \,L_{2}\right)\times \left(M\,\triangle \,M_{2}\right)\times \left(R\,\triangle \,R_{2}\right)~&=~\left[\left(L\cup L_{2}\right)\times \left(M\cup M_{2}\right)\times \left(R\cup R_{2}\right)\right]\;\setminus \;\left[\left(\left(L\cap L_{2}\right)\times M\times R\right)\;\cup \;\left(L\times \left(M\cap M_{2}\right)\times R\right)\;\cup \;\left(L\times M\times \left(R\cap R_{2}\right)\right)\right]\\\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d94f814dff9b895d507695c0d8c985c481618735)
In general,
need not be a subset nor a superset of
![{\displaystyle {\begin{alignedat}{4}\left(L\times R\right)\,\triangle \,\left(L_{2}\times R_{2}\right)~&=~&&\left(L\times R\right)\cup \left(L_{2}\times R_{2}\right)\;\setminus \;\left[\left(L\cap L_{2}\right)\times \left(R\cap R_{2}\right)\right]\\[0.7ex]\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/322c0e0919891dca5187754976d759923d50dae8)
![{\displaystyle {\begin{alignedat}{4}\left(L\times M\times R\right)\,\triangle \,\left(L_{2}\times M_{2}\times R_{2}\right)~&=~&&\left(L\times M\times R\right)\cup \left(L_{2}\times M_{2}\times R_{2}\right)\;\setminus \;\left[\left(L\cap L_{2}\right)\times \left(M\cap M_{2}\right)\times \left(R\cap R_{2}\right)\right]\\[0.7ex]\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e8dc4782583af89e0e19ff0befc52f8f3d620a64)
Arbitrary families of sets
Let
and
be indexed
families of sets. Whenever the assumption is needed, then all
indexing sets, such as
and
are assumed to be non-empty.
Definitions
A
family of sets or (more briefly) a family refers to a set whose elements are sets.
An
indexed family of sets is a function from some set, called its
indexing set, into some family of sets.
An indexed family of sets will be denoted by
where this notation assigns the symbol
for the indexing set and for every index
assigns the symbol
to the value of the function at
The function itself may then be denoted by the symbol
which is obtained from the notation
by replacing the index
with a bullet symbol
explicitly,
is the function:
![{\displaystyle {\begin{alignedat}{4}L_{\bullet }:\;&&I&&\;\to \;&\left\{L_{i}:i\in I\right\}\\[0.3ex]&&i&&\;\mapsto \;&L_{i}\\\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e8764184baf32db5783e7d26538adca48870a701)
which may be summarized by writing
Any given indexed family of sets
(which is a
function) can be canonically associated with its image/range
(which is a family of sets).
Conversely, any given family of sets
may be associated with the
-indexed family of sets
which is technically the
identity map
However, this is not a bijective correspondence because an indexed family of sets
is not required to be injective (that is, there may exist distinct indices
such as
), which in particular means that it is possible for distinct indexed families of sets (which are functions) to be associated with the same family of sets (by having the same image/range).
Arbitrary unions defined

|
|
(Def. 1)
|
If
then
which is somethings called the nullary union convention (despite being called a convention, this equality follows from the definition).
If
is a family of sets then
denotes the set:

Arbitrary intersections defined
If
then

|
|
(Def. 2)
|
If
is a non-empty family of sets then
denotes the set:

Nullary intersections
If
then

where every possible thing

in the universe
vacuously satisfied the condition: "if

then

". Consequently,

consists of
everything in the universe.
So if
and:
- if you are working in a
model in which there exists some
universe set
then 
- otherwise, if you are working in a
model in which "the class of all things
" is not a set (by far the most common situation) then
is undefined because
consists of everything, which makes
a
proper class and not a set.
- Assumption: Henceforth, whenever a formula requires some indexing set to be non-empty in order for an arbitrary intersection to be well-defined, then this will automatically be assumed without mention.
A consequence of this is the following assumption/definition:
- A finite intersection of sets or an intersection of finitely many sets refers to the intersection of a finite collection of one or more sets.
Some authors adopt the so called
nullary intersection convention, which is the convention that an empty intersection of sets is equal to some canonical set. In particular, if all sets are subsets of some set
then some author may declare that the empty intersection of these sets be equal to
However, the nullary intersection convention is not as commonly accepted as the nullary union convention and this article will not adopt it (this is due to the fact that unlike the empty union, the value of the empty intersection depends on
so if there are multiple sets under consideration, which is commonly the case, then the value of the empty intersection risks becoming ambiguous).
Multiple index sets


Distributing unions and intersections
Binary ⋂ of arbitrary ⋃'s

|
|
(Eq. 3a)
|
and

|
|
(Eq. 3b)
|
- If all
are
pairwise disjoint and all
are also pairwise disjoint, then so are all
(that is, if
then
).
- Importantly, if
then in general, 
(an
example of this is given below). The single union on the right hand side must be over all pairs

The same is usually true for other similar non-trivial set equalities and relations that depend on two (potentially unrelated) indexing sets
and
(such as
Eq. 4b or
Eq. 7g). Two exceptions are
Eq. 2c (unions of unions) and
Eq. 2d (intersections of intersections), but both of these are among the most trivial of set equalities and moreover, even for these equalities there is still something that must be proven.
[note 1]
- Example where equality fails: Let
and let
Let
and let
Then 
Furthermore, 
Binary ⋃ of arbitrary ⋂'s

|
|
(Eq. 4a)
|
and

|
|
(Eq. 4b)
|
- Importantly, if
then in general, 
(an
example of this is given above). The single intersection on the right hand side must be over all pairs

Arbitrary ⋂'s and arbitrary ⋃'s
Incorrectly distributing by swapping ⋂ and ⋃
Naively swapping
and
may produce a different set
The following inclusion always holds:

|
|
(Inclusion 1 ∪∩ is a subset of ∩∪)
|
In general, equality need not hold and moreover, the right hand side depends on how for each fixed
the sets
are labelled; and analogously, the left hand side depends on how for each fixed
the sets
are labelled. An example demonstrating this is now given.
- Example of dependence on labeling and failure of equality: To see why equality need not hold when
and
are swapped, let
and let
and
Then 
If
and
are swapped while
and
are unchanged, which gives rise to the sets
and
then

In particular, the left hand side is no longer
which shows that the left hand side
depends on how the sets are labelled.
If instead
and
are swapped while
and
are unchanged, which gives rise to the sets
and
then both the left hand side and right hand side are equal to
which shows that the right hand side also depends on how the sets are labeled.
Equality in
Inclusion 1 ∪∩ is a subset of ∩∪ can hold under certain circumstances, such as in
7e, which is the special case where
is
(that is,
with the same indexing sets
and
), or such as in
7f, which is the special case where
is
(that is,
with the indexing sets
and
swapped).
For a correct formula that extends the distributive laws, an approach other than just switching
and
is needed.
Correct distributive laws
Suppose that for each
is a non-empty index set and for each
let
be any set (for example, to apply this law to
use
for all
and use
for all
and all
). Let

denote the
Cartesian product, which can be interpreted as the set of all functions

such that

for every

Such a function may also be denoted using the tuple notation

where

for every

and conversely, a tuple

is just notation for the function with domain

whose value at

is

both notations can be used to denote the elements of

Then
![{\displaystyle \bigcap _{i\in I}\left[\;\bigcup _{j\in J_{i}}T_{i,j}\right]=\bigcup _{f\in \prod J_{\bullet }}\left[\;\bigcap _{i\in I}T_{i,f(i)}\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/02fa2001b3fd4df6b2be01c5b3c15f9855e0b784)
|
|
(Eq. 5 ∩∪ to ∪∩)
|
![{\displaystyle \bigcup _{i\in I}\left[\;\bigcap _{j\in J_{i}}T_{i,j}\right]=\bigcap _{f\in \prod J_{\bullet }}\left[\;\bigcup _{i\in I}T_{i,f(i)}\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/663db949dcd52e057cc3b250d9bdc3dce586a1cf)
|
|
(Eq. 6 ∪∩ to ∩∪)
|
where
Applying the distributive laws
Example application: In the particular case where all
are equal (that is,
for all
which is the case with the family
for example), then letting
denote this common set, the Cartesian product will be
which is the
set of all functions of the form
The above set equalities
Eq. 5 ∩∪ to ∪∩ and
Eq. 6 ∪∩ to ∩∪, respectively become:


which when combined with
Inclusion 1 ∪∩ is a subset of ∩∪ implies:

where
- on the left hand side, the indices
range over
(so the subscripts of
range over
)
- on the right hand side, the indices
range over
(so the subscripts of
range over
).
Example application: To apply the general formula to the case of
and
use
and let
for all
and let
for all
Every map
can be
bijectively identified with the pair 