Collective name of 6 mathematical functions
"Hyperbolic curve" redirects here. For the geometric curve, see
Hyperbola .
In
mathematics , hyperbolic functions are analogues of the ordinary
trigonometric functions , but defined using the
hyperbola rather than the
circle . Just as the points (cos t , sin t ) form a
circle with a unit radius , the points (cosh t , sinh t ) form the right half of the
unit hyperbola . Also, similarly to how the derivatives of sin(t ) and cos(t ) are cos(t ) and –sin(t ) respectively, the derivatives of sinh(t ) and cosh(t ) are cosh(t ) and +sinh(t ) respectively.
Hyperbolic functions occur in the calculations of angles and distances in
hyperbolic geometry . They also occur in the solutions of many linear
differential equations (such as the equation defining a
catenary ),
cubic equations , and
Laplace's equation in
Cartesian coordinates .
Laplace's equations are important in many areas of
physics , including
electromagnetic theory ,
heat transfer ,
fluid dynamics , and
special relativity .
The basic hyperbolic functions are:
[1]
hyperbolic sine "sinh " (),
[2]
hyperbolic cosine "cosh " (),
[3]
from which are derived:
[4]
hyperbolic tangent "tanh " (),
[5]
hyperbolic cosecant "csch " or "cosech " (
[3] )
hyperbolic secant "sech " (),
[6]
hyperbolic cotangent "coth " (),
[7]
[8]
corresponding to the derived trigonometric functions.
The
inverse hyperbolic functions are:
area hyperbolic sine "arsinh " (also denoted "sinh−1 ", "asinh " or sometimes "arcsinh ")
[9]
[10]
[11]
area hyperbolic cosine "arcosh " (also denoted "cosh−1 ", "acosh " or sometimes "arccosh ")
and so on.
A
ray through the
unit hyperbola x 2 − y 2 = 1 at the point
(cosh a , sinh a ) , where
a is twice the area between the ray, the hyperbola, and the
x -axis. For points on the hyperbola below the
x -axis, the area is considered negative (see
animated version with comparison with the trigonometric (circular) functions).
The hyperbolic functions take a
real argument called a
hyperbolic angle . The size of a hyperbolic angle is twice the area of its
hyperbolic sector . The hyperbolic functions may be defined in terms of the
legs of a right triangle covering this sector.
In
complex analysis , the hyperbolic functions arise when applying the ordinary sine and cosine functions to an imaginary angle. The hyperbolic sine and the hyperbolic cosine are
entire functions . As a result, the other hyperbolic functions are
meromorphic in the whole complex plane.
By
Lindemann–Weierstrass theorem , the hyperbolic functions have a
transcendental value for every non-zero
algebraic value of the argument.
[12]
Hyperbolic functions were introduced in the 1760s independently by
Vincenzo Riccati and
Johann Heinrich Lambert .
[13] Riccati used Sc. and Cc. (sinus/cosinus circulare ) to refer to circular functions and Sh. and Ch. (sinus/cosinus hyperbolico ) to refer to hyperbolic functions. Lambert adopted the names, but altered the abbreviations to those used today.
[14] The abbreviations sh , ch , th , cth are also currently used, depending on personal preference.
Notation
Definitions
There are various equivalent ways to define the hyperbolic functions.
Exponential definitions
cosh x is the
average of
ex and
e −x
In terms of the
exponential function :
[1]
[4]
Hyperbolic sine: the
odd part of the exponential function, that is,
sinh
x
=
e
x
−
e
−
x
2
=
e
2
x
−
1
2
e
x
=
1
−
e
−
2
x
2
e
−
x
.
{\displaystyle \sinh x={\frac {e^{x}-e^{-x}}{2}}={\frac {e^{2x}-1}{2e^{x}}}={\frac {1-e^{-2x}}{2e^{-x}}}.}
Hyperbolic cosine: the
even part of the exponential function, that is,
cosh
x
=
e
x
+
e
−
x
2
=
e
2
x
+
1
2
e
x
=
1
+
e
−
2
x
2
e
−
x
.
{\displaystyle \cosh x={\frac {e^{x}+e^{-x}}{2}}={\frac {e^{2x}+1}{2e^{x}}}={\frac {1+e^{-2x}}{2e^{-x}}}.}
Hyperbolic tangent:
tanh
x
=
sinh
x
cosh
x
=
e
x
−
e
−
x
e
x
+
e
−
x
=
e
2
x
−
1
e
2
x
+
1
.
{\displaystyle \tanh x={\frac {\sinh x}{\cosh x}}={\frac {e^{x}-e^{-x}}{e^{x}+e^{-x}}}={\frac {e^{2x}-1}{e^{2x}+1}}.}
Hyperbolic cotangent: for x ≠ 0 ,
coth
x
=
cosh
x
sinh
x
=
e
x
+
e
−
x
e
x
−
e
−
x
=
e
2
x
+
1
e
2
x
−
1
.
{\displaystyle \coth x={\frac {\cosh x}{\sinh x}}={\frac {e^{x}+e^{-x}}{e^{x}-e^{-x}}}={\frac {e^{2x}+1}{e^{2x}-1}}.}
Hyperbolic secant:
sech
x
=
1
cosh
x
=
2
e
x
+
e
−
x
=
2
e
x
e
2
x
+
1
.
{\displaystyle \operatorname {sech} x={\frac {1}{\cosh x}}={\frac {2}{e^{x}+e^{-x}}}={\frac {2e^{x}}{e^{2x}+1}}.}
Hyperbolic cosecant: for x ≠ 0 ,
csch
x
=
1
sinh
x
=
2
e
x
−
e
−
x
=
2
e
x
e
2
x
−
1
.
{\displaystyle \operatorname {csch} x={\frac {1}{\sinh x}}={\frac {2}{e^{x}-e^{-x}}}={\frac {2e^{x}}{e^{2x}-1}}.}
Differential equation definitions
The hyperbolic functions may be defined as solutions of
differential equations : The hyperbolic sine and cosine are the solution (s , c ) of the system
c
′
(
x
)
=
s
(
x
)
,
s
′
(
x
)
=
c
(
x
)
,
{\displaystyle {\begin{aligned}c'(x)&=s(x),\\s'(x)&=c(x),\\\end{aligned}}}
with the initial conditions
s
(
0
)
=
0
,
c
(
0
)
=
1.
{\displaystyle s(0)=0,c(0)=1.}
The initial conditions make the solution unique; without them any pair of functions
(
a
e
x
+
b
e
−
x
,
a
e
x
−
b
e
−
x
)
{\displaystyle (ae^{x}+be^{-x},ae^{x}-be^{-x})}
would be a solution.
sinh(x ) and cosh(x ) are also the unique solution of the equation f ″(x ) = f (x ) ,
such that f (0) = 1 , f ′(0) = 0 for the hyperbolic cosine, and f (0) = 0 , f ′(0) = 1 for the hyperbolic sine.
Complex trigonometric definitions
Hyperbolic functions may also be deduced from
trigonometric functions with
complex arguments:
Hyperbolic sine:
[1]
sinh
x
=
−
i
sin
(
i
x
)
.
{\displaystyle \sinh x=-i\sin(ix).}
Hyperbolic cosine:
[1]
cosh
x
=
cos
(
i
x
)
.
{\displaystyle \cosh x=\cos(ix).}
Hyperbolic tangent:
tanh
x
=
−
i
tan
(
i
x
)
.
{\displaystyle \tanh x=-i\tan(ix).}
Hyperbolic cotangent:
coth
x
=
i
cot
(
i
x
)
.
{\displaystyle \coth x=i\cot(ix).}
Hyperbolic secant:
sech
x
=
sec
(
i
x
)
.
{\displaystyle \operatorname {sech} x=\sec(ix).}
Hyperbolic cosecant:
csch
x
=
i
csc
(
i
x
)
.
{\displaystyle \operatorname {csch} x=i\csc(ix).}
where i is the
imaginary unit with i 2 = −1 .
The above definitions are related to the exponential definitions via
Euler's formula (See
§ Hyperbolic functions for complex numbers below).
Characterizing properties
Hyperbolic cosine
It can be shown that the
area under the curve of the hyperbolic cosine (over a finite interval) is always equal to the
arc length corresponding to that interval:
[15]
area
=
∫
a
b
cosh
x
d
x
=
∫
a
b
1
+
(
d
d
x
cosh
x
)
2
d
x
=
arc length.
{\displaystyle {\text{area}}=\int _{a}^{b}\cosh x\,dx=\int _{a}^{b}{\sqrt {1+\left({\frac {d}{dx}}\cosh x\right)^{2}}}\,dx={\text{arc length.}}}
Hyperbolic tangent
The hyperbolic tangent is the (unique) solution to the
differential equation f ′ = 1 − f 2 , with f (0) = 0 .
[16]
[17]
Useful relations
The hyperbolic functions satisfy many identities, all of them similar in form to the
trigonometric identities . In fact, Osborn's rule
[18] states that one can convert any trigonometric identity for
θ
{\displaystyle \theta }
,
2
θ
{\displaystyle 2\theta }
,
3
θ
{\displaystyle 3\theta }
or
θ
{\displaystyle \theta }
and
φ
{\displaystyle \varphi }
into a hyperbolic identity, by expanding it completely in terms of integral powers of sines and cosines, changing sine to sinh and cosine to cosh, and switching the sign of every term containing a product of two sinhs.
Odd and even functions:
sinh
(
−
x
)
=
−
sinh
x
cosh
(
−
x
)
=
cosh
x
{\displaystyle {\begin{aligned}\sinh(-x)&=-\sinh x\\\cosh(-x)&=\cosh x\end{aligned}}}
Hence:
tanh
(
−
x
)
=
−
tanh
x
coth
(
−
x
)
=
−
coth
x
sech
(
−
x
)
=
sech
x
csch
(
−
x
)
=
−
csch
x
{\displaystyle {\begin{aligned}\tanh(-x)&=-\tanh x\\\coth(-x)&=-\coth x\\\operatorname {sech} (-x)&=\operatorname {sech} x\\\operatorname {csch} (-x)&=-\operatorname {csch} x\end{aligned}}}
Thus, cosh x and sech x are
even functions ; the others are
odd functions .
arsech
x
=
arcosh
(
1
x
)
arcsch
x
=
arsinh
(
1
x
)
arcoth
x
=
artanh
(
1
x
)
{\displaystyle {\begin{aligned}\operatorname {arsech} x&=\operatorname {arcosh} \left({\frac {1}{x}}\right)\\\operatorname {arcsch} x&=\operatorname {arsinh} \left({\frac {1}{x}}\right)\\\operatorname {arcoth} x&=\operatorname {artanh} \left({\frac {1}{x}}\right)\end{aligned}}}
Hyperbolic sine and cosine satisfy:
cosh
x
+
sinh
x
=
e
x
cosh
x
−
sinh
x
=
e
−
x
cosh
2
x
−
sinh
2
x
=
1
{\displaystyle {\begin{aligned}\cosh x+\sinh x&=e^{x}\\\cosh x-\sinh x&=e^{-x}\\\cosh ^{2}x-\sinh ^{2}x&=1\end{aligned}}}
the last of which is similar to the
Pythagorean trigonometric identity .
One also has
sech
2
x
=
1
−
tanh
2
x
csch
2
x
=
coth
2
x
−
1
{\displaystyle {\begin{aligned}\operatorname {sech} ^{2}x&=1-\tanh ^{2}x\\\operatorname {csch} ^{2}x&=\coth ^{2}x-1\end{aligned}}}
for the other functions.
Sums of arguments
sinh
(
x
+
y
)
=
sinh
x
cosh
y
+
cosh
x
sinh
y
cosh
(
x
+
y
)
=
cosh
x
cosh
y
+
sinh
x
sinh
y
tanh
(
x
+
y
)
=
tanh
x
+
tanh
y
1
+
tanh
x
tanh
y
{\displaystyle {\begin{aligned}\sinh(x+y)&=\sinh x\cosh y+\cosh x\sinh y\\\cosh(x+y)&=\cosh x\cosh y+\sinh x\sinh y\\[6px]\tanh(x+y)&={\frac {\tanh x+\tanh y}{1+\tanh x\tanh y}}\\\end{aligned}}}
particularly
cosh
(
2
x
)
=
sinh
2
x
+
cosh
2
x
=
2
sinh
2
x
+
1
=
2
cosh
2
x
−
1
sinh
(
2
x
)
=
2
sinh
x
cosh
x
tanh
(
2
x
)
=
2
tanh
x
1
+
tanh
2
x
{\displaystyle {\begin{aligned}\cosh(2x)&=\sinh ^{2}{x}+\cosh ^{2}{x}=2\sinh ^{2}x+1=2\cosh ^{2}x-1\\\sinh(2x)&=2\sinh x\cosh x\\\tanh(2x)&={\frac {2\tanh x}{1+\tanh ^{2}x}}\\\end{aligned}}}
Also:
sinh
x
+
sinh
y
=
2
sinh
(
x
+
y
2
)
cosh
(
x
−
y
2
)
cosh
x
+
cosh
y
=
2
cosh
(
x
+
y
2
)
cosh
(
x
−
y
2
)
{\displaystyle {\begin{aligned}\sinh x+\sinh y&=2\sinh \left({\frac {x+y}{2}}\right)\cosh \left({\frac {x-y}{2}}\right)\\\cosh x+\cosh y&=2\cosh \left({\frac {x+y}{2}}\right)\cosh \left({\frac {x-y}{2}}\right)\\\end{aligned}}}
Subtraction formulas
sinh
(
x
−
y
)
=
sinh
x
cosh
y
−
cosh
x
sinh
y
cosh
(
x
−
y
)
=
cosh
x
cosh
y
−
sinh
x
sinh
y
tanh
(
x
−
y
)
=
tanh
x
−
tanh
y
1
−
tanh
x
tanh
y
{\displaystyle {\begin{aligned}\sinh(x-y)&=\sinh x\cosh y-\cosh x\sinh y\\\cosh(x-y)&=\cosh x\cosh y-\sinh x\sinh y\\\tanh(x-y)&={\frac {\tanh x-\tanh y}{1-\tanh x\tanh y}}\\\end{aligned}}}
Also:
[19]
sinh
x
−
sinh
y
=
2
cosh
(
x
+
y
2
)
sinh
(
x
−
y
2
)
cosh
x
−
cosh
y
=
2
sinh
(
x
+
y
2
)
sinh
(
x
−
y
2
)
{\displaystyle {\begin{aligned}\sinh x-\sinh y&=2\cosh \left({\frac {x+y}{2}}\right)\sinh \left({\frac {x-y}{2}}\right)\\\cosh x-\cosh y&=2\sinh \left({\frac {x+y}{2}}\right)\sinh \left({\frac {x-y}{2}}\right)\\\end{aligned}}}
Half argument formulas
sinh
(
x
2
)
=
sinh
x
2
(
cosh
x
+
1
)
=
sgn
x
cosh
x
−
1
2
cosh
(
x
2
)
=
cosh
x
+
1
2
tanh
(
x
2
)
=
sinh
x
cosh
x
+
1
=
sgn
x
cosh
x
−
1
cosh
x
+
1
=
e
x
−
1
e
x
+
1
{\displaystyle {\begin{aligned}\sinh \left({\frac {x}{2}}\right)&={\frac {\sinh x}{\sqrt {2(\cosh x+1)}}}&&=\operatorname {sgn} x\,{\sqrt {\frac {\cosh x-1}{2}}}\\[6px]\cosh \left({\frac {x}{2}}\right)&={\sqrt {\frac {\cosh x+1}{2}}}\\[6px]\tanh \left({\frac {x}{2}}\right)&={\frac {\sinh x}{\cosh x+1}}&&=\operatorname {sgn} x\,{\sqrt {\frac {\cosh x-1}{\cosh x+1}}}={\frac {e^{x}-1}{e^{x}+1}}\end{aligned}}}
where sgn is the
sign function .
If x ≠ 0 , then
[20]
tanh
(
x
2
)
=
cosh
x
−
1
sinh
x
=
coth
x
−
csch
x
{\displaystyle \tanh \left({\frac {x}{2}}\right)={\frac {\cosh x-1}{\sinh x}}=\coth x-\operatorname {csch} x}
Square formulas
sinh
2
x
=
1
2
(
cosh
2
x
−
1
)
cosh
2
x
=
1
2
(
cosh
2
x
+
1
)
{\displaystyle {\begin{aligned}\sinh ^{2}x&={\tfrac {1}{2}}(\cosh 2x-1)\\\cosh ^{2}x&={\tfrac {1}{2}}(\cosh 2x+1)\end{aligned}}}
Inequalities
The following inequality is useful in statistics:
cosh
(
t
)
≤
e
t
2
/
2
{\displaystyle \operatorname {cosh} (t)\leq e^{t^{2}/2}}
[21]
It can be proved by comparing term by term the Taylor series of the two functions.
Inverse functions as logarithms
arsinh
(
x
)
=
ln
(
x
+
x
2
+
1
)
arcosh
(
x
)
=
ln
(
x
+
x
2
−
1
)
x
≥
1
artanh
(
x
)
=
1
2
ln
(
1
+
x
1
−
x
)
|
x
|
<
1
arcoth
(
x
)
=
1
2
ln
(
x
+
1
x
−
1
)
|
x
|
>
1
arsech
(
x
)
=
ln
(
1
x
+
1
x
2
−
1
)
=
ln
(
1
+
1
−
x
2
x
)
0
<
x
≤
1
arcsch
(
x
)
=
ln
(
1
x
+
1
x
2
+
1
)
x
≠
0
{\displaystyle {\begin{aligned}\operatorname {arsinh} (x)&=\ln \left(x+{\sqrt {x^{2}+1}}\right)\\\operatorname {arcosh} (x)&=\ln \left(x+{\sqrt {x^{2}-1}}\right)&&x\geq 1\\\operatorname {artanh} (x)&={\frac {1}{2}}\ln \left({\frac {1+x}{1-x}}\right)&&|x|<1\\\operatorname {arcoth} (x)&={\frac {1}{2}}\ln \left({\frac {x+1}{x-1}}\right)&&|x|>1\\\operatorname {arsech} (x)&=\ln \left({\frac {1}{x}}+{\sqrt {{\frac {1}{x^{2}}}-1}}\right)=\ln \left({\frac {1+{\sqrt {1-x^{2}}}}{x}}\right)&&0<x\leq 1\\\operatorname {arcsch} (x)&=\ln \left({\frac {1}{x}}+{\sqrt {{\frac {1}{x^{2}}}+1}}\right)&&x\neq 0\end{aligned}}}
Derivatives
d
d
x
sinh
x
=
cosh
x
d
d
x
cosh
x
=
sinh
x
d
d
x
tanh
x
=
1
−
tanh
2
x
=
sech
2
x
=
1
cosh
2
x
d
d
x
coth
x
=
1
−
coth
2
x
=
−
csch
2
x
=
−
1
sinh
2
x
x
≠
0
d
d
x
sech
x
=
−
tanh
x
sech
x
d
d
x
csch
x
=
−
coth
x
csch
x
x
≠
0
{\displaystyle {\begin{aligned}{\frac {d}{dx}}\sinh x&=\cosh x\\{\frac {d}{dx}}\cosh x&=\sinh x\\{\frac {d}{dx}}\tanh x&=1-\tanh ^{2}x=\operatorname {sech} ^{2}x={\frac {1}{\cosh ^{2}x}}\\{\frac {d}{dx}}\coth x&=1-\coth ^{2}x=-\operatorname {csch} ^{2}x=-{\frac {1}{\sinh ^{2}x}}&&x\neq 0\\{\frac {d}{dx}}\operatorname {sech} x&=-\tanh x\operatorname {sech} x\\{\frac {d}{dx}}\operatorname {csch} x&=-\coth x\operatorname {csch} x&&x\neq 0\end{aligned}}}
d
d
x
arsinh
x
=
1
x
2
+
1
d
d
x
arcosh
x
=
1
x
2
−
1
1
<
x
d
d
x
artanh
x
=
1
1
−
x
2
|
x
|
<
1
d
d
x
arcoth
x
=
1
1
−
x
2
1
<
|
x
|
d
d
x
arsech
x
=
−
1
x
1
−
x
2
0
<
x
<
1
d
d
x
arcsch
x
=
−
1
|
x
|
1
+
x
2
x
≠
0
{\displaystyle {\begin{aligned}{\frac {d}{dx}}\operatorname {arsinh} x&={\frac {1}{\sqrt {x^{2}+1}}}\\{\frac {d}{dx}}\operatorname {arcosh} x&={\frac {1}{\sqrt {x^{2}-1}}}&&1<x\\{\frac {d}{dx}}\operatorname {artanh} x&={\frac {1}{1-x^{2}}}&&|x|<1\\{\frac {d}{dx}}\operatorname {arcoth} x&={\frac {1}{1-x^{2}}}&&1<|x|\\{\frac {d}{dx}}\operatorname {arsech} x&=-{\frac {1}{x{\sqrt {1-x^{2}}}}}&&0<x<1\\{\frac {d}{dx}}\operatorname {arcsch} x&=-{\frac {1}{|x|{\sqrt {1+x^{2}}}}}&&x\neq 0\end{aligned}}}
Second derivatives
Each of the functions sinh and cosh is equal to its
second derivative , that is:
d
2
d
x
2
sinh
x
=
sinh
x
{\displaystyle {\frac {d^{2}}{dx^{2}}}\sinh x=\sinh x}
d
2
d
x
2
cosh
x
=
cosh
x
.
{\displaystyle {\frac {d^{2}}{dx^{2}}}\cosh x=\cosh x\,.}
All functions with this property are
linear combinations of sinh and cosh , in particular the
exponential functions
e
x
{\displaystyle e^{x}}
and
e
−
x
{\displaystyle e^{-x}}
.
Standard integrals
∫
sinh
(
a
x
)
d
x
=
a
−
1
cosh
(
a
x
)
+
C
∫
cosh
(
a
x
)
d
x
=
a
−
1
sinh
(
a
x
)
+
C
∫
tanh
(
a
x
)
d
x
=
a
−
1
ln
(
cosh
(
a
x
)
)
+
C
∫
coth
(
a
x
)
d
x
=
a
−
1
ln
|
sinh
(
a
x
)
|
+
C
∫
sech
(
a
x
)
d
x
=
a
−
1
arctan
(
sinh
(
a
x
)
)
+
C
∫
csch
(
a
x
)
d
x
=
a
−
1
ln
|
tanh
(
a
x
2
)
|
+
C
=
a
−
1
ln
|
coth
(
a
x
)
−
csch
(
a
x
)
|
+
C
=
−
a
−
1
arcoth
(
cosh
(
a
x
)
)
+
C
{\displaystyle {\begin{aligned}\int \sinh(ax)\,dx&=a^{-1}\cosh(ax)+C\\\int \cosh(ax)\,dx&=a^{-1}\sinh(ax)+C\\\int \tanh(ax)\,dx&=a^{-1}\ln(\cosh(ax))+C\\\int \coth(ax)\,dx&=a^{-1}\ln \left|\sinh(ax)\right|+C\\\int \operatorname {sech} (ax)\,dx&=a^{-1}\arctan(\sinh(ax))+C\\\int \operatorname {csch} (ax)\,dx&=a^{-1}\ln \left|\tanh \left({\frac {ax}{2}}\right)\right|+C=a^{-1}\ln \left|\coth \left(ax\right)-\operatorname {csch} \left(ax\right)\right|+C=-a^{-1}\operatorname {arcoth} \left(\cosh \left(ax\right)\right)+C\end{aligned}}}
The following integrals can be proved using
hyperbolic substitution :
∫
1
a
2
+
u
2
d
u
=
arsinh
(
u
a
)
+
C
∫
1
u
2
−
a
2
d
u
=
sgn
u
arcosh
|
u
a
|
+
C
∫
1
a
2
−
u
2
d
u
=
a
−
1
artanh
(
u
a
)
+
C
u
2
<
a
2
∫
1
a
2
−
u
2
d
u
=
a
−
1
arcoth
(
u
a
)
+
C
u
2
>
a
2
∫
1
u
a
2
−
u
2
d
u
=
−
a
−
1
arsech
|
u
a
|
+
C
∫
1
u
a
2
+
u
2
d
u
=
−
a
−
1
arcsch
|
u
a
|
+
C
{\displaystyle {\begin{aligned}\int {{\frac {1}{\sqrt {a^{2}+u^{2}}}}\,du}&=\operatorname {arsinh} \left({\frac {u}{a}}\right)+C\\\int {{\frac {1}{\sqrt {u^{2}-a^{2}}}}\,du}&=\operatorname {sgn} {u}\operatorname {arcosh} \left|{\frac {u}{a}}\right|+C\\\int {\frac {1}{a^{2}-u^{2}}}\,du&=a^{-1}\operatorname {artanh} \left({\frac {u}{a}}\right)+C&&u^{2}<a^{2}\\\int {\frac {1}{a^{2}-u^{2}}}\,du&=a^{-1}\operatorname {arcoth} \left({\frac {u}{a}}\right)+C&&u^{2}>a^{2}\\\int {{\frac {1}{u{\sqrt {a^{2}-u^{2}}}}}\,du}&=-a^{-1}\operatorname {arsech} \left|{\frac {u}{a}}\right|+C\\\int {{\frac {1}{u{\sqrt {a^{2}+u^{2}}}}}\,du}&=-a^{-1}\operatorname {arcsch} \left|{\frac {u}{a}}\right|+C\end{aligned}}}
where C is the
constant of integration .
Taylor series expressions
It is possible to express explicitly the
Taylor series at zero (or the
Laurent series , if the function is not defined at zero) of the above functions.
sinh
x
=
x
+
x
3
3
!
+
x
5
5
!
+
x
7
7
!
+
⋯
=
∑
n
=
0
∞
x
2
n
+
1
(
2
n
+
1
)
!
{\displaystyle \sinh x=x+{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}+{\frac {x^{7}}{7!}}+\cdots =\sum _{n=0}^{\infty }{\frac {x^{2n+1}}{(2n+1)!}}}
This series is
convergent for every
complex value of
x . Since the function
sinh x is
odd , only odd exponents for
x occur in its Taylor series.
cosh
x
=
1
+
x
2
2
!
+
x
4
4
!
+
x
6
6
!
+
⋯
=
∑
n
=
0
∞
x
2
n
(
2
n
)
!
{\displaystyle \cosh x=1+{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}+{\frac {x^{6}}{6!}}+\cdots =\sum _{n=0}^{\infty }{\frac {x^{2n}}{(2n)!}}}
This series is
convergent for every
complex value of
x . Since the function
cosh x is
even , only even exponents for
x occur in its Taylor series.
The sum of the sinh and cosh series is the
infinite series expression of the
exponential function .
The following series are followed by a description of a subset of their
domain of convergence , where the series is convergent and its sum equals the function.
tanh
x
=
x
−
x
3
3
+
2
x
5
15
−
17
x
7
315
+
⋯
=
∑
n
=
1
∞
2
2
n
(
2
2
n
−
1
)
B
2
n
x
2
n
−
1
(
2
n
)
!
,
|
x
|
<
π
2
coth
x
=
x
−
1
+
x
3
−
x
3
45
+
2
x
5
945
+
⋯
=
∑
n
=
0
∞
2
2
n
B
2
n
x
2
n
−
1
(
2
n
)
!
,
0
<
|
x
|
<
π
sech
x
=
1
−
x
2
2
+
5
x
4
24
−
61
x
6
720
+
⋯
=
∑
n
=
0
∞
E
2
n
x
2
n
(
2
n
)
!
,
|
x
|
<
π
2
csch
x
=
x
−
1
−
x
6
+
7
x
3
360
−
31
x
5
15120
+
⋯
=
∑
n
=
0
∞
2
(
1
−
2
2
n
−
1
)
B
2
n
x
2
n
−
1
(
2
n
)
!
,
0
<
|
x
|
<
π
{\displaystyle {\begin{aligned}\tanh x&=x-{\frac {x^{3}}{3}}+{\frac {2x^{5}}{15}}-{\frac {17x^{7}}{315}}+\cdots =\sum _{n=1}^{\infty }{\frac {2^{2n}(2^{2n}-1)B_{2n}x^{2n-1}}{(2n)!}},\qquad \left|x\right|<{\frac {\pi }{2}}\\\coth x&=x^{-1}+{\frac {x}{3}}-{\frac {x^{3}}{45}}+{\frac {2x^{5}}{945}}+\cdots =\sum _{n=0}^{\infty }{\frac {2^{2n}B_{2n}x^{2n-1}}{(2n)!}},\qquad 0<\left|x\right|<\pi \\\operatorname {sech} x&=1-{\frac {x^{2}}{2}}+{\frac {5x^{4}}{24}}-{\frac {61x^{6}}{720}}+\cdots =\sum _{n=0}^{\infty }{\frac {E_{2n}x^{2n}}{(2n)!}},\qquad \left|x\right|<{\frac {\pi }{2}}\\\operatorname {csch} x&=x^{-1}-{\frac {x}{6}}+{\frac {7x^{3}}{360}}-{\frac {31x^{5}}{15120}}+\cdots =\sum _{n=0}^{\infty }{\frac {2(1-2^{2n-1})B_{2n}x^{2n-1}}{(2n)!}},\qquad 0<\left|x\right|<\pi \end{aligned}}}
where:
Infinite products and continued fractions
The following expansions are valid in the whole complex plane:
sinh
x
=
x
∏
n
=
1
∞
(
1
+
x
2
n
2
π
2
)
=
x
1
−
x
2
2
⋅
3
+
x
2
−
2
⋅
3
x
2
4
⋅
5
+
x
2
−
4
⋅
5
x
2
6
⋅
7
+
x
2
−
⋱
{\displaystyle \sinh x=x\prod _{n=1}^{\infty }\left(1+{\frac {x^{2}}{n^{2}\pi ^{2}}}\right)={\cfrac {x}{1-{\cfrac {x^{2}}{2\cdot 3+x^{2}-{\cfrac {2\cdot 3x^{2}}{4\cdot 5+x^{2}-{\cfrac {4\cdot 5x^{2}}{6\cdot 7+x^{2}-\ddots }}}}}}}}}
cosh
x
=
∏
n
=
1
∞
(
1
+
x
2
(
n
−
1
/
2
)
2
π
2
)
=
1
1
−
x
2
1
⋅
2
+
x
2
−
1
⋅
2
x
2
3
⋅
4
+
x
2
−
3
⋅
4
x
2
5
⋅
6
+
x
2
−
⋱
{\displaystyle \cosh x=\prod _{n=1}^{\infty }\left(1+{\frac {x^{2}}{(n-1/2)^{2}\pi ^{2}}}\right)={\cfrac {1}{1-{\cfrac {x^{2}}{1\cdot 2+x^{2}-{\cfrac {1\cdot 2x^{2}}{3\cdot 4+x^{2}-{\cfrac {3\cdot 4x^{2}}{5\cdot 6+x^{2}-\ddots }}}}}}}}}
tanh
x
=
1
1
x
+
1
3
x
+
1
5
x
+
1
7
x
+
⋱
{\displaystyle \tanh x={\cfrac {1}{{\cfrac {1}{x}}+{\cfrac {1}{{\cfrac {3}{x}}+{\cfrac {1}{{\cfrac {5}{x}}+{\cfrac {1}{{\cfrac {7}{x}}+\ddots }}}}}}}}}
Comparison with circular functions
Circle and hyperbola tangent at (1,1) display geometry of circular functions in terms of
circular sector area
u and hyperbolic functions depending on
hyperbolic sector area
u .
The hyperbolic functions represent an expansion of
trigonometry beyond the
circular functions . Both types depend on an
argument , either
circular angle or
hyperbolic angle .
Since the
area of a circular sector with radius r and angle u (in radians) is r 2 u /2 , it will be equal to u when r = √2 . In the diagram, such a circle is tangent to the hyperbola xy = 1 at (1,1). The yellow sector depicts an area and angle magnitude. Similarly, the yellow and red sectors together depict an area and
hyperbolic angle magnitude .
The legs of the two
right triangles with hypotenuse on the ray defining the angles are of length √2 times the circular and hyperbolic functions.
The hyperbolic angle is an
invariant measure with respect to the
squeeze mapping , just as the circular angle is invariant under rotation.
[22]
The
Gudermannian function gives a direct relationship between the circular functions and the hyperbolic functions that does not involve complex numbers.
The graph of the function a cosh(x /a ) is the
catenary , the curve formed by a uniform flexible chain, hanging freely between two fixed points under uniform gravity.
Relationship to the exponential function
The decomposition of the exponential function in its
even and odd parts gives the identities
e
x
=
cosh
x
+
sinh
x
,
{\displaystyle e^{x}=\cosh x+\sinh x,}
and
e
−
x
=
cosh
x
−
sinh
x
.
{\displaystyle e^{-x}=\cosh x-\sinh x.}
Combined with
Euler's formula
e
i
x
=
cos
x
+
i
sin
x
,
{\displaystyle e^{ix}=\cos x+i\sin x,}
this gives
e
x
+
i
y
=
(
cosh
x
+
sinh
x
)
(
cos
y
+
i
sin
y
)
{\displaystyle e^{x+iy}=(\cosh x+\sinh x)(\cos y+i\sin y)}
for the
general complex exponential function .
Additionally,
e
x
=
1
+
tanh
x
1
−
tanh
x
=
1
+
tanh
x
2
1
−
tanh
x
2
{\displaystyle e^{x}={\sqrt {\frac {1+\tanh x}{1-\tanh x}}}={\frac {1+\tanh {\frac {x}{2}}}{1-\tanh {\frac {x}{2}}}}}
Hyperbolic functions for complex numbers
Hyperbolic functions in the complex plane
sinh
(
z
)
{\displaystyle \sinh(z)}
cosh
(
z
)
{\displaystyle \cosh(z)}
tanh
(
z
)
{\displaystyle \tanh(z)}
coth
(
z
)
{\displaystyle \coth(z)}
sech
(
z
)
{\displaystyle \operatorname {sech} (z)}
csch
(
z
)
{\displaystyle \operatorname {csch} (z)}
Since the
exponential function can be defined for any
complex argument, we can also extend the definitions of the hyperbolic functions to complex arguments. The functions sinh z and cosh z are then
holomorphic .
Relationships to ordinary trigonometric functions are given by
Euler's formula for complex numbers:
e
i
x
=
cos
x
+
i
sin
x
e
−
i
x
=
cos
x
−
i
sin
x
{\displaystyle {\begin{aligned}e^{ix}&=\cos x+i\sin x\\e^{-ix}&=\cos x-i\sin x\end{aligned}}}
so:
cosh
(
i
x
)
=
1
2
(
e
i
x
+
e
−
i
x
)
=
cos
x
sinh
(
i
x
)
=
1
2
(
e
i
x
−
e
−
i
x
)
=
i
sin
x
cosh
(
x
+
i
y
)
=
cosh
(
x
)
cos
(
y
)
+
i
sinh
(
x
)
sin
(
y
)
sinh
(
x
+
i
y
)
=
sinh
(
x
)
cos
(
y
)
+
i
cosh
(
x
)
sin
(
y
)
tanh
(
i
x
)
=
i
tan
x
cosh
x
=
cos
(
i
x
)
sinh
x
=
−
i
sin
(
i
x
)
tanh
x
=
−
i
tan
(
i
x
)
{\displaystyle {\begin{aligned}\cosh(ix)&={\frac {1}{2}}\left(e^{ix}+e^{-ix}\right)=\cos x\\\sinh(ix)&={\frac {1}{2}}\left(e^{ix}-e^{-ix}\right)=i\sin x\\\cosh(x+iy)&=\cosh(x)\cos(y)+i\sinh(x)\sin(y)\\\sinh(x+iy)&=\sinh(x)\cos(y)+i\cosh(x)\sin(y)\\\tanh(ix)&=i\tan x\\\cosh x&=\cos(ix)\\\sinh x&=-i\sin(ix)\\\tanh x&=-i\tan(ix)\end{aligned}}}
Thus, hyperbolic functions are
periodic with respect to the imaginary component, with period
2
π
i
{\displaystyle 2\pi i}
(
π
i
{\displaystyle \pi i}
for hyperbolic tangent and cotangent).
See also
References
^
a
b
c
d Weisstein, Eric W.
"Hyperbolic Functions" . mathworld.wolfram.com . Retrieved 2020-08-29 .
^ (1999) Collins Concise Dictionary , 4th edition, HarperCollins, Glasgow,
ISBN
0 00 472257 4 , p. 1386
^
a
b Collins Concise Dictionary , p. 328
^
a
b
"Hyperbolic Functions" . www.mathsisfun.com . Retrieved 2020-08-29 .
^ Collins Concise Dictionary , p. 1520
^ Collins Concise Dictionary , p. 1340
^ Collins Concise Dictionary , p. 329
^
tanh
^
Woodhouse, N. M. J. (2003), Special Relativity , London: Springer, p. 71,
ISBN
978-1-85233-426-0
^
Abramowitz, Milton ;
Stegun, Irene A. , eds. (1972),
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , New York:
Dover Publications ,
ISBN
978-0-486-61272-0
^
Some examples of using arcsinh found in
Google Books .
^ Niven, Ivan (1985). Irrational Numbers . Vol. 11. Mathematical Association of America.
ISBN
9780883850381 .
JSTOR
10.4169/j.ctt5hh8zn .
^ Robert E. Bradley, Lawrence A. D'Antonio, Charles Edward Sandifer. Euler at 300: an appreciation. Mathematical Association of America, 2007. Page 100.
^ Georg F. Becker. Hyperbolic functions. Read Books, 1931. Page xlviii.
^ N.P., Bali (2005).
Golden Integral Calculus . Firewall Media. p. 472.
ISBN
81-7008-169-6 .
^ Willi-hans Steeb (2005).
Nonlinear Workbook, The: Chaos, Fractals, Cellular Automata, Neural Networks, Genetic Algorithms, Gene Expression Programming, Support Vector Machine, Wavelets, Hidden Markov Models, Fuzzy Logic With C++, Java And Symbolicc++ Programs (3rd ed.). World Scientific Publishing Company. p. 281.
ISBN
978-981-310-648-2 .
Extract of page 281 (using lambda=1)
^ Keith B. Oldham; Jan Myland; Jerome Spanier (2010).
An Atlas of Functions: with Equator, the Atlas Function Calculator (2nd, illustrated ed.). Springer Science & Business Media. p. 290.
ISBN
978-0-387-48807-3 .
Extract of page 290
^ Osborn, G. (July 1902).
"Mnemonic for hyperbolic formulae" .
The Mathematical Gazette . 2 (34): 189.
doi :
10.2307/3602492 .
JSTOR
3602492 .
S2CID
125866575 .
^ Martin, George E. (1986). The foundations of geometry and the non-euclidean plane (1st corr. ed.). New York: Springer-Verlag. p. 416.
ISBN
3-540-90694-0 .
^
"Prove the identity tanh(x/2) = (cosh(x) - 1)/sinh(x)" .
StackExchange (mathematics) . Retrieved 24 January 2016 .
^ Audibert, Jean-Yves (2009). "Fast learning rates in statistical inference through aggregation". The Annals of Statistics. p. 1627.
[1]
^
Mellen W. Haskell , "On the introduction of the notion of hyperbolic functions",
Bulletin of the American Mathematical Society 1 :6:155–9,
full text
External links
Trigonometric and hyperbolic functions
Groups Other