This article needs attention from an expert in mathematics. See the
talk page for details.WikiProject Mathematics may be able to help recruit an expert.(March 2011)
A characteristic feature of the many variants of Hilbert systems is that the context is not changed in any of their rules of inference, while both
natural deduction and
sequent calculus contain some context-changing rules. Thus, if one is interested only in the derivability of
tautologies, no hypothetical judgments, then one can formalize the Hilbert system in such a way that its rules of inference contain only
judgments of a rather simple form. The same cannot be done with the other two deductions systems:[citation needed] as context is changed in some of their rules of inferences, they cannot be formalized so that hypothetical judgments could be avoided – not even if we want to use them just for proving derivability of tautologies.
Formal deductions
In a Hilbert-style deduction system, a formal deduction is a finite sequence of formulas in which each formula is either an axiom or is obtained from previous formulas by a rule of inference. These formal deductions are meant to mirror natural-language proofs, although they are far more detailed.
Suppose is a set of formulas, considered as hypotheses. For example, could be a set of axioms for
group theory or
set theory. The notation means that there is a deduction that ends with using as axioms only logical axioms and elements of . Thus, informally, means that is provable assuming all the formulas in .
Hilbert-style deduction systems are characterized by the use of numerous schemes of logical axioms. An
axiom scheme is an infinite set of axioms obtained by substituting all formulas of some form into a specific pattern. The set of logical axioms includes not only those axioms generated from this pattern, but also any generalization of one of those axioms. A generalization of a formula is obtained by prefixing zero or more universal quantifiers on the formula; for example is a generalization of .
Logical axioms
There are several variant axiomatisations of predicate logic, since for any logic there is freedom in choosing axioms and rules that characterise that logic. We describe here a Hilbert system with nine axioms and just the rule modus ponens, which we call the one-rule axiomatisation and which describes classical equational logic. We deal with a minimal language for this logic, where formulas use only the connectives and and only the quantifier . Later we show how the system can be extended to include additional logical connectives, such as and , without enlarging the class of deducible formulas.
The first four logical axiom schemes allow (together with modus ponens) for the manipulation of logical connectives.
Intuitionistic logic is achieved by adding axioms P4i and P5i to positive implicational logic, or by adding axiom P5i to minimal logic. Both P4i and P5i are theorems of classical propositional logic.
P4i.
P5i.
Note that these are axiom schemes, which represent infinitely many specific instances of axioms. For example, P1 might represent the particular axiom instance , or it might represent : the is a place where any formula can be placed. A variable such as this that ranges over formulae is called a 'schematic variable'.
With a second rule of
uniform substitution (US), we can change each of these axiom schemes into a single axiom, replacing each schematic variable by some propositional variable that isn't mentioned in any axiom to get what we call the substitutional axiomatisation. Both formalisations have variables, but where the one-rule axiomatisation has schematic variables that are outside the logic's language, the substitutional axiomatisation uses propositional variables that do the same work by expressing the idea of a variable ranging over formulae with a rule that uses substitution.
US. Let be a formula with one or more instances of the propositional variable , and let be another formula. Then from , infer .[dubious –
discuss]
The next three logical axiom schemes provide ways to add, manipulate, and remove universal quantifiers.
Q5. where t may be substituted for x in
Q6.
Q7. where x is not free in .
These three additional rules extend the propositional system to axiomatise
classical predicate logic. Likewise, these three rules extend system for intuitionstic propositional logic (with P1-3 and P4i and P5i) to
intuitionistic predicate logic.
Universal quantification is often given an alternative axiomatisation using an extra rule of generalisation (see the section on Metatheorems), in which case the rules Q6 and Q7 are redundant.[dubious –
discuss]
The final axiom schemes are required to work with formulas involving the equality symbol.
I8. for every variable x.
I9.
Conservative extensions
It is common to include in a Hilbert-style deduction system only axioms for implication and negation. Given these axioms, it is possible to form
conservative extensions of the
deduction theorem that permit the use of additional connectives. These extensions are called conservative because if a formula φ involving new connectives is rewritten as a
logically equivalent formula θ involving only negation, implication, and universal quantification, then φ is derivable in the extended system if and only if θ is derivable in the original system. When fully extended, a Hilbert-style system will resemble more closely a system of
natural deduction.
Because Hilbert-style systems have very few deduction rules, it is common to prove metatheorems that show that additional deduction rules add no deductive power, in the sense that a deduction using the new deduction rules can be converted into a deduction using only the original deduction rules.
Generalization: If and x does not occur free in any formula of then .
Some useful theorems and their proofs
Following are several theorems in propositional logic, along with their proofs (or links to these proofs in other articles). Note that since (P1) itself can be proved using the other axioms, in fact (P2), (P3) and (P4) suffice for proving all these theorems.
Axioms P1, P2 and P3, with the deduction rule modus ponens (formalising
intuitionistic propositional logic), correspond to
combinatory logic base combinators I, K and S with the application operator. Proofs in the Hilbert system then correspond to combinator terms in combinatory logic. See also
Curry–Howard correspondence.
Ruzsa, Imre; Máté, András (1997). Bevezetés a modern logikába (in Hungarian). Budapest: Osiris Kiadó.
Tarski, Alfred (1990). Bizonyítás és igazság (in Hungarian). Budapest: Gondolat. It is a Hungarian translation of
Alfred Tarski's selected papers on
semantic theory of truth.
David Hilbert (1927) "The foundations of mathematics", translated by Stephan Bauer-Menglerberg and Dagfinn Føllesdal (pp. 464–479). in:
Hilbert's 1927, Based on an earlier 1925 "foundations" lecture (pp. 367–392), presents his 17 axioms -- axioms of implication #1-4, axioms about & and V #5-10, axioms of negation #11-12, his logical ε-axiom #13, axioms of equality #14-15, and axioms of number #16-17 -- along with the other necessary elements of his Formalist "proof theory" -- e.g. induction axioms, recursion axioms, etc; he also offers up a spirited defense against L.E.J. Brouwer's Intuitionism. Also see Hermann Weyl's (1927) comments and rebuttal (pp. 480–484), Paul Bernay's (1927) appendix to Hilbert's lecture (pp. 485–489) and Luitzen Egbertus Jan Brouwer's (1927) response (pp. 490–495)
Kleene, Stephen Cole (1952). Introduction to Metamathematics (10th impression with 1971 corrections ed.). Amsterdam NY: North Holland Publishing Company.
ISBN0-7204-2103-9.
See in particular Chapter IV Formal System (pp. 69–85) wherein Kleene presents subchapters §16 Formal symbols, §17 Formation rules, §18 Free and bound variables (including substitution), §19 Transformation rules (e.g. modus ponens) -- and from these he presents 21 "postulates" -- 18 axioms and 3 "immediate-consequence" relations divided as follows: Postulates for the propostional calculus #1-8, Additional postulates for the predicate calculus #9-12, and Additional postulates for number theory #13-21.