In
set theory, the complement of a
setA, often denoted by A∁ (or A′),[1] is the set of
elements not in A.[2]
When all sets in the
universe, i.e. all sets under consideration, are considered to be
members of a given set U, the absolute complement of A is the set of elements in U that are not in A.
The relative complement of A with respect to a set B, also termed the set difference of B and A, written is the set of elements in B that are not in A.
Absolute complement
The absolute complement of the white disc is the red region
Definition
If A is a set, then the absolute complement of A (or simply the complement of A) is the set of elements not in A (within a larger set that is implicitly defined). In other words, let U be a set that contains all the elements under study; if there is no need to mention U, either because it has been previously specified, or it is obvious and unique, then the absolute complement of A is the relative complement of A in U:[3]
Or formally:
The absolute complement of A is usually denoted by A∁. Other notations include [2][4]
Examples
Assume that the universe is the set of
integers. If A is the set of odd numbers, then the complement of A is the set of even numbers. If B is the set of
multiples of 3, then the complement of B is the set of numbers
congruent to 1 or 2 modulo 3 (or, in simpler terms, the integers that are not multiples of 3).
Assume that the universe is the
standard 52-card deck. If the set A is the suit of spades, then the complement of A is the
union of the suits of clubs, diamonds, and hearts. If the set B is the union of the suits of clubs and diamonds, then the complement of B is the union of the suits of hearts and spades.
Relationships between relative and absolute complements:
Relationship with a set difference:
The first two complement laws above show that if A is a non-empty,
proper subset of U, then {A, A∁} is a
partition of U.
Relative complement
Definition
If A and B are sets, then the relative complement of A in B,[5] also termed the set difference of B and A,[6] is the set of elements in B but not in A.
The relative complement of A in B:
The relative complement of A in B is denoted according to the
ISO 31-11 standard. It is sometimes written but this notation is ambiguous, as in some contexts (for example,
Minkowski set operations in
functional analysis) it can be interpreted as the set of all elements where b is taken from B and a from A.
Let A, B, and C be three sets. The following
identities capture notable properties of relative complements:
with the important special case demonstrating that intersection can be expressed using only the relative complement operation.
If , then .
is equivalent to .
Complementary relation
A
binary relation is defined as a subset of a
product of sets The complementary relation is the set complement of in The complement of relation can be written
Here, is often viewed as a
logical matrix with rows representing the elements of and columns elements of The truth of corresponds to 1 in row column Producing the complementary relation to then corresponds to switching all 1s to 0s, and 0s to 1s for the logical matrix of the complement.
In the
LaTeX typesetting language, the command \setminus[7] is usually used for rendering a set difference symbol, which is similar to a
backslash symbol. When rendered, the \setminus command looks identical to \backslash, except that it has a little more space in front and behind the slash, akin to the LaTeX sequence \mathbin{\backslash}. A variant \smallsetminus is available in the amssymb package. The symbol (as opposed to ) is produced by \complement. (It corresponds to the Unicode symbol ∁.)
In programming languages
Some
programming languages have
sets among their built in
data structures. Such a data structure behaves as a
finite set, that is, it consists of a finite number of data that are not specifically ordered, and may thus be considered as the elements of a set. In some cases, the elements are not necessary distinct, and the data structure codes
multisets rather than sets. These programming languages have operators or functions for computing the complement and the set differences.
These operators may generally be applied also to data structures that are not really mathematical sets, such as
ordered lists or
arrays. It follows that some programming languages may have a function called set_difference, even if they do not have any data structure for sets.
See also
Algebra of sets – Identities and relationships involving sets
^The set in which the complement is considered is thus implicitly mentioned in an absolute complement, and explicitly mentioned in a relative complement.