Archaea (/ɑːrˈkiːə/ⓘar-KEE-ə) is a
domain of
organisms. Traditionally, Archaea only included its
prokaryotic members, but this since has been found to be
paraphyletic, as
eukaryotes are now known to have evolved from archaea. Even though the domain Archaea includes eukaryotes, the term "archaea" (
sg.: archaeon /ɑːrˈkiːɒn/ar-KEE-on, from the Greek "ἀρχαῖον", which means ancient) in English still generally refers specifically to prokaryotic members of Archaea. Archaea were initially
classified as
bacteria, receiving the name archaebacteria (/ˌɑːrkibækˈtɪəriə/, in the Archaebacteria
kingdom), but this term has fallen out of use.[5]
Archaeal cells have unique properties separating them from
Bacteria and
Eukaryota. Archaea are further divided into multiple recognized
phyla. Classification is difficult because most have not been
isolated in a laboratory and have been detected only by their
gene sequences in environmental samples. It is unknown if they are able to produce
endospores.
Archaea and bacteria are generally similar in size and shape, although a few archaea have very different shapes, such as the flat, square cells of Haloquadratum walsbyi.[6] Despite this
morphological similarity to bacteria, archaea possess
genes and several
metabolic pathways that are more closely related to those of eukaryotes, notably for the
enzymes involved in
transcription and
translation. Other aspects of archaeal biochemistry are unique, such as their reliance on
ether lipids in their
cell membranes,[7] including
archaeols. Archaea use more diverse energy sources than eukaryotes, ranging from
organic compounds such as sugars, to
ammonia,
metal ions or even
hydrogen gas. The
salt-tolerantHaloarchaea use sunlight as an energy source, and other species of archaea
fix carbon (autotrophy), but unlike
cyanobacteria, no known species of archaea does both. Archaea
reproduce asexually by
binary fission,
fragmentation, or
budding; unlike bacteria, no known species of Archaea form
endospores.
The first observed archaea were
extremophiles, living in extreme environments such as
hot springs and
salt lakes with no other organisms. Improved molecular detection tools led to the discovery of archaea in almost every
habitat, including soil,[8] oceans, and
marshlands. Archaea are particularly numerous in the oceans, and the archaea in
plankton may be one of the most abundant groups of organisms on the planet.
Archaea are a major part of
Earth's life. They are part of the
microbiota of all organisms. In the
human microbiome, they are important in the
gut, mouth, and on the skin.[9] Their morphological, metabolic, and geographical diversity permits them to play multiple ecological roles: carbon fixation;
nitrogen cycling; organic compound turnover; and maintaining microbial
symbiotic and
syntrophic communities, for example.[8][10]
For much of the 20th century, prokaryotes were regarded as a single group of organisms and classified based on their
biochemistry,
morphology and
metabolism. Microbiologists tried to classify microorganisms based on the structures of their
cell walls, their shapes, and the substances they consume.[11] In 1965,
Emile Zuckerkandl and
Linus Pauling[12] instead proposed using the sequences of the
genes in different prokaryotes to work out how they are related to each other. This
phylogenetic approach is the main method used today.[13]
Archaea were first classified separately from bacteria in 1977 by
Carl Woese and
George E. Fox, based on their
ribosomal RNA (rRNA) genes.[14] (At that time only the
methanogens were known). They called these groups the Urkingdoms of Archaebacteria and Eubacteria, though other researchers treated them as
kingdoms or subkingdoms. Woese and Fox gave the first evidence for Archaebacteria as a separate "line of descent": 1. lack of
peptidoglycan in their cell walls, 2. two unusual coenzymes, 3. results of
16S ribosomal RNA gene sequencing. To emphasize this difference, Woese,
Otto Kandler and
Mark Wheelis later proposed reclassifying organisms into three natural
domains known as the
three-domain system: the
Eukarya, the
Bacteria and the Archaea,[2] in what is now known as the
Woesian Revolution.[15]
The word archaea comes from the
Ancient Greekἀρχαῖα, meaning "ancient things",[16] as the first representatives of the domain Archaea were
methanogens and it was assumed that their metabolism reflected Earth's primitive atmosphere and the organisms' antiquity, but as new habitats were studied, more organisms were discovered. Extreme
halophilic[17] and
hyperthermophilic microbes[18] were also included in Archaea. For a long time, archaea were seen as extremophiles that exist only in extreme habitats such as
hot springs and
salt lakes, but by the end of the 20th century, archaea had been identified in non-extreme environments as well. Today, they are known to be a large and diverse group of organisms abundantly distributed throughout nature.[19] This new appreciation of the importance and ubiquity of archaea came from using
polymerase chain reaction (PCR) to detect prokaryotes from environmental samples (such as water or soil) by multiplying their ribosomal genes. This allows the detection and identification of organisms that have not been
cultured in the laboratory.[20][21]
The classification of archaea, and of prokaryotes in general, is a rapidly moving and contentious field. Current classification systems aim to organize archaea into groups of organisms that share structural features and common ancestors.[22] These classifications rely heavily on the use of the sequence of
ribosomal RNA genes to reveal relationships among organisms (
molecular phylogenetics).[23] Most of the culturable and well-investigated species of archaea are members of two main
phyla, the "
Euryarchaeota" and the
Thermoproteota (formerly Crenarchaeota). Other groups have been tentatively created, such as the peculiar species Nanoarchaeum equitans — discovered in 2003 and assigned its own phylum, the "
Nanoarchaeota".[24] A new phylum "
Korarchaeota" has also been proposed, containing a small group of unusual thermophilic species sharing features of both the main phyla, but most closely related to the Thermoproteota.[25][26] Other detected species of archaea are only distantly related to any of these groups, such as the
Archaeal Richmond Mine acidophilic nanoorganisms (ARMAN, comprising
Micrarchaeota and Parvarchaeota), which were discovered in 2006[27] and are some of the smallest organisms known.[28]
A superphylum – TACK – which includes the Thaumarchaeota (now
Nitrososphaerota), "
Aigarchaeota", Crenarchaeota (now
Thermoproteota), and "
Korarchaeota" was proposed in 2011 to be related to the origin of eukaryotes.[29] In 2017, the newly discovered and newly named
Asgard superphylum was proposed to be more closely related to the original eukaryote and a sister group to TACK.[30]
In 2013, the superphylum DPANN was proposed to group "
Nanoarchaeota", "
Nanohaloarchaeota",
Archaeal Richmond Mine acidophilic nanoorganisms (ARMAN, comprising "
Micrarchaeota" and "
Parvarchaeota"), and other similar archaea. This archaeal superphylum encompasses at least 10 different lineages and includes organisms with extremely small cell and genome sizes and limited metabolic capabilities. Therefore, DPANN may include members obligately dependent on symbiotic interactions, and may even include novel parasites. However, other phylogenetic analyses found that DPANN does not form a monophyletic group, and that the apparent grouping is caused by
long branch attraction (LBA), suggesting that all these lineages belong to "Euryarchaeota".[31][3]
Phylogeny
According to Tom A. Williams et al. 2017,[32] Castelle & Banfield (2018)[33] and
GTDB release 09-RS220 (24 April 2024):[34][35][36]
Tom A. Williams et al. 2017[32] and Castelle & Banfield 2018[33]
The classification of archaea into species is also controversial.
Ernst Mayr's
species definition — a
reproductively isolated group of interbreeding organisms — does not apply, as archaea reproduce only asexually.[38]
Archaea show high levels of
horizontal gene transfer between lineages. Some researchers suggest that individuals can be grouped into species-like populations given highly similar genomes and infrequent gene transfer to/from cells with less-related genomes, as in the genus Ferroplasma.[39] On the other hand, studies in Halorubrum found significant genetic transfer to/from less-related populations, limiting the criterion's applicability.[40] Some researchers question whether such species designations have practical meaning.[41]
Current knowledge on genetic diversity in archaeans is fragmentary, so the total number of species cannot be estimated with any accuracy.[23] Estimates of the number of phyla range from 18 to 23, of which only 8 have representatives that have been cultured and studied directly. Many of these hypothesized groups are known from a single rRNA sequence, so the level of diversity remains obscure.[42] This situation is also seen in the Bacteria; many uncultured microbes present similar issues with characterization.[43]
The following phyla have been proposed, but have not been validly published according to the Bacteriological Code (including those that have candidatus status):
Although probable prokaryotic cell
fossils date to almost 3.5
billion years ago, most prokaryotes do not have distinctive morphologies, and fossil shapes cannot be used to identify them as archaea.[58] Instead,
chemical fossils of unique
lipids are more informative because such compounds do not occur in other organisms.[59] Some publications suggest that archaeal or eukaryotic lipid remains are present in
shales dating from 2.7 billion years ago,[60] though such data have since been questioned.[61] These lipids have also been detected in even older rocks from west
Greenland. The oldest such traces come from the
Isua district, which includes Earth's oldest known sediments, formed 3.8 billion years ago.[62] The archaeal lineage may be the most ancient that exists on Earth.[63]
Woese argued that the bacteria, archaea, and eukaryotes represent separate lines of descent that diverged early on from an ancestral colony of organisms.[64][65] One possibility[65][66] is that this occurred before the
evolution of cells, when the lack of a typical cell membrane allowed unrestricted
lateral gene transfer, and that the common ancestors of the three domains arose by fixation of specific subsets of genes.[65][66] It is possible that the
last common ancestor of bacteria and archaea was a
thermophile, which raises the possibility that lower temperatures are "extreme environments" for archaea, and organisms that live in cooler environments appeared only later.[67] Since archaea and bacteria are no more related to each other than they are to eukaryotes, the term prokaryote may suggest a false similarity between them.[68] However, structural and functional similarities between lineages often occur because of shared ancestral traits or
evolutionary convergence. These similarities are known as a grade, and
prokaryotes are best thought of as a grade of life, characterized by such features as an absence of membrane-bound organelles.
Comparison with other domains
The following table compares some major characteristics of the three domains, to illustrate their similarities and differences.[69]
Archaea were split off as a third domain because of the large differences in their ribosomal RNA structure. The particular molecule
16S rRNA is key to the production of proteins in all organisms. Because this function is so central to life, organisms with mutations in their 16S rRNA are unlikely to survive, leading to great (but not absolute) stability in the structure of this polynucleotide over generations. 16S rRNA is large enough to show organism-specific variations, but still small enough to be compared quickly. In 1977, Carl Woese, a microbiologist studying the genetic sequences of organisms, developed a new comparison method that involved splitting the RNA into fragments that could be sorted and compared with other fragments from other organisms.[14] The more similar the patterns between species, the more closely they are related.[72]
Woese used his new rRNA comparison method to categorize and contrast different organisms. He compared a variety of species and happened upon a group of methanogens with rRNA vastly different from any known prokaryotes or eukaryotes.[14] These methanogens were much more similar to each other than to other organisms, leading Woese to propose the new domain of Archaea.[14] His experiments showed that the archaea were genetically more similar to eukaryotes than prokaryotes, even though they were more similar to prokaryotes in structure.[73] This led to the conclusion that Archaea and Eukarya shared a common ancestor more recent than Eukarya and Bacteria.[73] The development of the nucleus occurred after the split between Bacteria and this common ancestor.[73][2]
One property unique to archaea is the abundant use of ether-linked lipids in their cell membranes. Ether linkages are more chemically stable than the ester linkages found in bacteria and eukarya, which may be a contributing factor to the ability of many archaea to survive in extreme environments that place heavy stress on cell membranes, such as extreme heat and
salinity. Comparative analysis of archaeal genomes has also identified several molecular
conserved signature indels and signature proteins uniquely present in either all archaea or different main groups within archaea.[74][75][76] Another unique feature of archaea, found in no other organisms, is
methanogenesis (the metabolic production of methane). Methanogenic archaea play a pivotal role in ecosystems with organisms that derive energy from oxidation of methane, many of which are bacteria, as they are often a major source of methane in such environments and can play a role as primary producers.
Methanogens also play a critical role in the
carbon cycle, breaking down organic carbon into methane, which is also a major greenhouse gas.[77]
This difference in the biochemical structure of Bacteria and Archaea has been explained by researchers through evolutionary processes.[vague] It is theorized that both
domains originated at deep sea alkaline
hydrothermal vents. At least twice, microbes evolved lipid biosynthesis and cell wall biochemistry. It has been suggested that the
last universal common ancestor was a non-free-living organism.[78] It may have had a permeable membrane composed of bacterial simple chain amphiphiles (fatty acids), including archaeal simple chain amphiphiles (isoprenoids). These stabilize fatty acid membranes in seawater; this property may have driven the divergence of bacterial and archaeal membranes, "with the later biosynthesis of phospholipids giving rise to the unique G1P and G3P headgroups of archaea and bacteria respectively. If so, the properties conferred by membrane isoprenoids place the lipid divide as early as the origin of life".[79]
Relationship to bacteria
The relationships among the
three domains are of central importance for understanding the origin of life. Most of the
metabolic pathways, which are the object of the majority of an organism's genes, are common between Archaea and Bacteria, while most genes involved in
genome expression are common between Archaea and Eukarya.[81] Within prokaryotes, archaeal cell structure is most similar to that of
gram-positive bacteria, largely because both have a single lipid bilayer[82] and usually contain a thick sacculus (exoskeleton) of varying chemical composition.[83] In some phylogenetic trees based upon different gene/protein sequences of prokaryotic homologs, the archaeal homologs are more closely related to those of gram-positive bacteria.[82] Archaea and gram-positive bacteria also share conserved
indels in a number of important proteins, such as
Hsp70 and
glutamine synthetase I;[82][84] but the phylogeny of these genes was interpreted to reveal interdomain gene transfer,[85][86] and might not reflect the organismal relationship(s).[87]
It has been proposed that the archaea evolved from Gram-positive bacteria in response to antibiotic
selection pressure.[82][84][88] This is suggested by the observation that archaea are resistant to a wide variety of antibiotics that are produced primarily by Gram-positive bacteria,[82][84] and that these antibiotics act primarily on the genes that distinguish archaea from bacteria. The proposal is that the selective pressure towards resistance generated by the gram-positive antibiotics was eventually sufficient to cause extensive changes in many of the antibiotics' target genes, and that these strains represented the common ancestors of present-day Archaea.[88] The evolution of Archaea in response to antibiotic selection, or any other competitive selective pressure, could also explain their adaptation to extreme environments (such as high temperature or acidity) as the result of a search for unoccupied niches to escape from antibiotic-producing organisms;[88][89]Cavalier-Smith has made a similar suggestion, the
Neomura hypothesis.[90] This proposal is also supported by other work investigating protein structural relationships[91] and studies that suggest that gram-positive bacteria may constitute the earliest branching lineages within the prokaryotes.[92]
The evolutionary relationship between archaea and
eukaryotes remains unclear. Aside from the similarities in cell structure and function that are discussed below, many genetic trees group the two.[94]
Complicating factors include claims that the relationship between eukaryotes and the archaeal phylum
Thermoproteota is closer than the relationship between the "
Euryarchaeota" and the phylum Thermoproteota[95] and the presence of archaea-like genes in certain bacteria, such as Thermotoga maritima, from
horizontal gene transfer.[96] The standard hypothesis states that the ancestor of the eukaryotes diverged early from the Archaea,[97][98] and that eukaryotes arose through
symbiogenesis, the fusion of an archaean and a eubacterium, which formed the
mitochondria; this hypothesis explains the genetic similarities between the groups.[93] The
eocyte hypothesis instead posits that
Eukaryota emerged relatively late from the Archaea.[99]
A lineage of archaea discovered in 2015, Lokiarchaeum (of the proposed new phylum "
Lokiarchaeota"), named for a
hydrothermal vent called
Loki's Castle in the Arctic Ocean, was found to be the most closely related to eukaryotes known at that time. It has been called a transitional organism between prokaryotes and eukaryotes.[100][101]
Details of the relation of Asgard members and eukaryotes are still under consideration,[103] although, in January 2020, scientists reported that Candidatus Prometheoarchaeum syntrophicum, a type of Asgard archaea, may be a possible link between simple
prokaryotic and complex
eukaryotic microorganisms about two billion years ago.[104][105][106]
Morphology
Individual archaea range from 0.1
micrometers (μm) to over 15 μm in diameter, and occur in various shapes, commonly as spheres, rods, spirals or plates.[107] Other morphologies in the
Thermoproteota include irregularly shaped lobed cells in Sulfolobus, needle-like filaments that are less than half a micrometer in diameter in Thermofilum, and almost perfectly rectangular rods in Thermoproteus and Pyrobaculum.[108] Archaea in the genus Haloquadratum such as Haloquadratum walsbyi are flat, square specimens that live in hypersaline pools.[109] These unusual shapes are probably maintained by both their cell walls and a
prokaryotic cytoskeleton. Proteins related to the cytoskeleton components of other organisms exist in archaea,[110] and filaments form within their cells,[111] but in contrast with other organisms, these cellular structures are poorly understood.[112] In Thermoplasma and Ferroplasma the lack of a
cell wall means that the cells have irregular shapes, and can resemble
amoebae.[113]
Some species form aggregates or filaments of cells up to 200 μm long.[107] These organisms can be prominent in
biofilms.[114] Notably, aggregates of Thermococcus coalescens cells fuse together in culture, forming single giant cells.[115] Archaea in the genus Pyrodictium produce an elaborate multicell colony involving arrays of long, thin hollow tubes called cannulae that stick out from the cells' surfaces and connect them into a dense bush-like agglomeration.[116] The function of these cannulae is not settled, but they may allow communication or nutrient exchange with neighbors.[117] Multi-species colonies exist, such as the "string-of-pearls" community that was discovered in 2001 in a German swamp. Round whitish colonies of a novel Euryarchaeota species are spaced along thin filaments that can range up to 15 centimetres (5.9 in) long; these filaments are made of a particular bacteria species.[118]
Structure, composition development, and operation
Archaea and bacteria have generally similar
cell structure, but cell composition and organization set the archaea apart. Like bacteria, archaea lack interior membranes and
organelles.[68] Like bacteria, the
cell membranes of archaea are usually bounded by a
cell wall and they swim using one or more
flagella.[119] Structurally, archaea are most similar to
gram-positive bacteria. Most have a single plasma membrane and cell wall, and lack a
periplasmic space; the exception to this general rule is Ignicoccus, which possess a particularly large periplasm that contains membrane-bound
vesicles and is enclosed by an outer membrane.[120]
Most archaea (but not Thermoplasma and Ferroplasma) possess a cell wall.[113] In most archaea, the wall is assembled from surface-layer proteins, which form an
S-layer.[121] An S-layer is a rigid array of protein molecules that cover the outside of the cell (like
chain mail).[122] This layer provides both chemical and physical protection, and can prevent
macromolecules from contacting the cell membrane.[123] Unlike bacteria, archaea lack
peptidoglycan in their cell walls.[124]Methanobacteriales do have cell walls containing
pseudopeptidoglycan, which resembles eubacterial peptidoglycan in morphology, function, and physical structure, but pseudopeptidoglycan is distinct in chemical structure; it lacks
D-amino acids and
N-acetylmuramic acid, substituting the latter with
N-Acetyltalosaminuronic acid.[123]
Archaeal flagella are known as
archaella, that operate like bacterial
flagella – their long stalks are driven by rotatory motors at the base. These motors are powered by a
proton gradient across the membrane, but archaella are notably different in composition and development.[119] The two types of flagella evolved from different ancestors. The bacterial flagellum shares a common ancestor with the
type III secretion system,[125][126] while archaeal flagella appear to have evolved from bacterial
type IV pili.[127] In contrast with the bacterial flagellum, which is hollow and assembled by subunits moving up the central pore to the tip of the flagella, archaeal flagella are synthesized by adding subunits at the base.[128]
Membranes
Archaeal membranes are made of molecules that are distinctly different from those in all other life forms, showing that archaea are related only distantly to bacteria and eukaryotes.[129] In all organisms,
cell membranes are made of molecules known as
phospholipids. These molecules possess both a
polar part that dissolves in water (the
phosphate "head"), and a "greasy" non-polar part that does not (the lipid tail). These dissimilar parts are connected by a
glycerol moiety. In water, phospholipids cluster, with the heads facing the water and the tails facing away from it. The major structure in cell membranes is a double layer of these phospholipids, which is called a
lipid bilayer.[130]
The phospholipids of archaea are unusual in four ways:
They have membranes composed of glycerol-
ether lipids, whereas bacteria and eukaryotes have membranes composed mainly of glycerol-
esterlipids.[131] The difference is the type of bond that joins the lipids to the glycerol moiety; the two types are shown in yellow in the figure at the right. In ester lipids, this is an
ester bond, whereas in ether lipids this is an
ether bond.[132]
The
stereochemistry of the archaeal glycerol moiety is the mirror image of that found in other organisms. The glycerol moiety can occur in two forms that are mirror images of one another, called enantiomers. Just as a right hand does not fit easily into a left-handed glove, enantiomers of one type generally cannot be used or made by
enzymes adapted for the other. The archaeal phospholipids are built on a backbone of sn-glycerol-1-phosphate, which is an enantiomer of sn-glycerol-3-phosphate, the phospholipid backbone found in bacteria and eukaryotes. This suggests that archaea use entirely different enzymes for synthesizing phospholipids as compared to bacteria and eukaryotes. Such enzymes developed very early in life's history, indicating an early split from the other two domains.[129]
Archaeal lipid tails differ from those of other organisms in that they are based upon long
isoprenoid chains with multiple side-branches, sometimes with
cyclopropane or
cyclohexane rings.[133] By contrast, the
fatty acids in the membranes of other organisms have straight chains without side branches or rings. Although isoprenoids play an important role in the biochemistry of many organisms, only the archaea use them to make phospholipids. These branched chains may help prevent archaeal membranes from leaking at high temperatures.[134]
In some archaea, the lipid bilayer is replaced by a monolayer. In effect, the archaea fuse the tails of two phospholipid molecules into a single molecule with two polar heads (a
bolaamphiphile); this fusion may make their membranes more rigid and better able to resist harsh environments.[135] For example, the lipids in Ferroplasma are of this type, which is thought to aid this organism's survival in its highly acidic habitat.[136]
Other groups of archaea use sunlight as a source of energy (they are
phototrophs), but oxygen–generating
photosynthesis does not occur in any of these organisms.[138] Many basic
metabolic pathways are shared among all forms of life; for example, archaea use a modified form of
glycolysis (the
Entner–Doudoroff pathway) and either a complete or partial
citric acid cycle.[139] These similarities to other organisms probably reflect both early origins in the history of life and their high level of efficiency.[140]
Some Euryarchaeota are
methanogens (archaea that produce methane as a result of metabolism) living in
anaerobic environments, such as swamps. This form of metabolism evolved early, and it is even possible that the first free-living organism was a methanogen.[141] A common reaction involves the use of
carbon dioxide as an electron acceptor to oxidize
hydrogen. Methanogenesis involves a range of
coenzymes that are unique to these archaea, such as
coenzyme M and
methanofuran.[142] Other organic compounds such as
alcohols,
acetic acid or
formic acid are used as alternative
electron acceptors by methanogens. These reactions are common in
gut-dwelling archaea.
Acetic acid is also broken down into methane and carbon dioxide directly, by acetotrophic archaea. These acetotrophs are archaea in the order
Methanosarcinales, and are a major part of the communities of microorganisms that produce
biogas.[143]
Other archaea use CO 2 in the
atmosphere as a source of carbon, in a process called
carbon fixation (they are
autotrophs). This process involves either a highly modified form of the
Calvin cycle[145] or another metabolic pathway called the 3-hydroxypropionate/ 4-hydroxybutyrate cycle.[146] The Thermoproteota also use the
reverse Krebs cycle while the "Euryarchaeota" also use the
reductive acetyl-CoA pathway.[147] Carbon fixation is powered by inorganic energy sources. No known archaea carry out
photosynthesis[148] (
Halobacterium is the only known phototroph archeon but it uses an alternative process to photosynthesis). Archaeal energy sources are extremely diverse, and range from the oxidation of
ammonia by the
Nitrosopumilales[149][150] to the oxidation of
hydrogen sulfide or elemental
sulfur by species of Sulfolobus, using either oxygen or metal ions as electron acceptors.[138]
Archaea usually have a single
circular chromosome,[152] but many euryarchaea have been shown to bear multiple copies of this chromosome.[153] The largest known archaeal genome as of 2002 was 5,751,492
base pairs in Methanosarcina acetivorans.[154] The tiny 490,885 base-pair genome of Nanoarchaeum equitans is one-tenth of this size and the smallest archaeal genome known; it is estimated to contain only 537 protein-encoding genes.[155] Smaller independent pieces of DNA, called plasmids, are also found in archaea. Plasmids may be transferred between cells by physical contact, in a process that may be similar to
bacterial conjugation.[156][157]
Archaea are genetically distinct from bacteria and eukaryotes, with up to 15% of the proteins encoded by any one archaeal genome being unique to the domain, although most of these unique genes have no known function.[159] Of the remainder of the unique proteins that have an identified function, most belong to the Euryarchaeota and are involved in methanogenesis. The proteins that archaea, bacteria and eukaryotes share form a common core of cell function, relating mostly to
transcription,
translation, and
nucleotide metabolism.[160] Other characteristic archaeal features are the organization of genes of related function – such as enzymes that catalyze steps in the same
metabolic pathway into novel
operons, and large differences in
tRNA genes and their
aminoacyl tRNA synthetases.[160]
Transcription in archaea more closely resembles eukaryotic than bacterial transcription, with the archaeal
RNA polymerase being very close to its equivalent in eukaryotes,[152] while archaeal translation shows signs of both bacterial and eukaryotic equivalents.[161] Although archaea have only one type of RNA polymerase, its structure and function in transcription seems to be close to that of the eukaryotic
RNA polymerase II, with similar protein assemblies (the
general transcription factors) directing the binding of the RNA polymerase to a gene's
promoter,[162] but other archaeal
transcription factors are closer to those found in bacteria.[163]Post-transcriptional modification is simpler than in eukaryotes, since most archaeal genes lack
introns, although there are many introns in their
transfer RNA and
ribosomal RNA genes,[164] and introns may occur in a few protein-encoding genes.[165][166]
Gene transfer and genetic exchange
Haloferax volcanii, an extreme halophilic archaeon, forms cytoplasmic bridges between cells that appear to be used for transfer of DNA from one cell to another in either direction.[167]
When the hyperthermophilic archaea Sulfolobus solfataricus[168] and Sulfolobus acidocaldarius[169] are exposed to DNA-damaging UV irradiation or to the agents
bleomycin or
mitomycin C, species-specific cellular aggregation is induced. Aggregation in S. solfataricus could not be induced by other physical stressors, such as pH or temperature shift,[168] suggesting that aggregation is induced specifically by
DNA damage. Ajon et al.[169] showed that UV-induced cellular aggregation mediates chromosomal marker exchange with high frequency in S. acidocaldarius. Recombination rates exceeded those of uninduced cultures by up to three orders of magnitude. Frols et al.[168][170] and Ajon et al.[169] hypothesized that cellular aggregation enhances species-specific DNA transfer between Sulfolobus cells in order to provide increased repair of damaged DNA by means of
homologous recombination. This response may be a primitive form of sexual interaction similar to the more well-studied bacterial transformation systems that are also associated with species-specific DNA transfer between cells leading to homologous recombinational repair of DNA damage.[171]
Archaeal viruses
Archaea are the target of a number of
viruses in a diverse virosphere distinct from bacterial and eukaryotic viruses. They have been organized into 15–18 DNA-based families so far, but multiple species remain un-isolated and await classification.[172][173][174] These families can be informally divided into two groups: archaea-specific and cosmopolitan. Archaeal-specific viruses target only archaean species and currently include 12 families. Numerous unique, previously unidentified viral structures have been observed in this group, including: bottle-shaped, spindle-shaped, coil-shaped, and droplet-shaped viruses.[173] While the reproductive cycles and genomic mechanisms of archaea-specific species may be similar to other viruses, they bear unique characteristics that were specifically developed due to the morphology of host cells they infect.[172] Their virus release mechanisms differ from that of other phages.
Bacteriophages generally undergo either
lytic pathways,
lysogenic pathways, or (rarely) a mix of the two.[175] Most archaea-specific viral strains maintain a stable, somewhat lysogenic, relationship with their hosts – appearing as a chronic infection. This involves the gradual, and continuous, production and release of
virions without killing the host cell.[176] Prangishyili (2013) noted that it has been hypothesized that tailed archaeal phages originated from bacteriophages capable of infecting
haloarchaeal species. If the hypothesis is correct, it can be concluded that other
double-stranded DNA viruses that make up the rest of the archaea-specific group are their own unique group in the global viral community. Krupovic et al. (2018) states that the high levels of
horizontal gene transfer, rapid mutation rates in viral genomes, and lack of universal gene sequences have led researchers to perceive the evolutionary pathway of archaeal viruses as a network. The lack of similarities among
phylogenetic markers in this network and the global virosphere, as well as external linkages to non-viral elements, may suggest that some species of archaea specific viruses evolved from non-viral
mobile genetic elements (MGE).[173]
Archaea reproduce asexually by binary or multiple
fission, fragmentation, or
budding;
mitosis and
meiosis do not occur, so if a species of archaea exists in more than one form, all have the same genetic material.[107]Cell division is controlled in a
cell cycle; after the cell's
chromosome is replicated and the two daughter chromosomes separate, the cell divides.[182] In the genus Sulfolobus, the cycle has characteristics that are similar to both bacterial and eukaryotic systems. The chromosomes replicate from multiple starting points (
origins of replication) using
DNA polymerases that resemble the equivalent eukaryotic enzymes.[183]
In Euryarchaeota the cell division protein
FtsZ, which forms a contracting ring around the cell, and the components of the
septum that is constructed across the center of the cell, are similar to their bacterial equivalents.[182] In cren-[184][185] and thaumarchaea,[186] the cell division machinery Cdv fulfills a similar role. This machinery is related to the eukaryotic ESCRT-III machinery which, while best known for its role in cell sorting, also has been seen to fulfill a role in separation between divided cell, suggesting an ancestral role in cell division.[187]
Both bacteria and eukaryotes, but not archaea, make
spores.[188] Some species of
Haloarchaea undergo
phenotypic switching and grow as several different cell types, including thick-walled structures that are resistant to
osmotic shock and allow the archaea to survive in water at low salt concentrations, but these are not reproductive structures and may instead help them reach new habitats.[189]
Behavior
Communication
Quorum sensing was originally thought to not exist in Archaea, but recent studies have shown evidence of some species being able to perform cross-talk through quorum sensing. Other studies have shown syntrophic interactions between archaea and bacteria during biofilm growth. Although research is limited in archaeal quorum sensing, some studies have uncovered LuxR proteins in archaeal species, displaying similarities with bacteria LuxR, and ultimately allowing for the detection of small molecules that are used in high density communication. Similarly to bacteria, Archaea LuxR solos have shown to bind to AHLs (lactones) and non-AHLs ligans, which is a large part in performing intraspecies, interspecies, and interkingdom communication through quorum sensing.[190]
Ecology
Habitats
Archaea exist in a broad range of
habitats, and are now recognized as a major part of global
ecosystems,[19] and may represent about 20% of microbial cells in the oceans.[191] However, the first-discovered archaeans were
extremophiles.[137] Indeed, some archaea survive high temperatures, often above 100 °C (212 °F), as found in
geysers,
black smokers, and oil wells. Other common habitats include very cold habitats and highly
saline,
acidic, or
alkaline water, but archaea include
mesophiles that grow in mild conditions, in
swamps and
marshland,
sewage, the
oceans, the
intestinal tract of animals, and
soils.[8][19] Similar to
PGPR, Archaea are now considered as a source of plant growth promotion as well.[8]
Extremophile archaea are members of four main
physiological groups. These are the
halophiles,
thermophiles,
alkaliphiles, and
acidophiles.[192] These groups are not comprehensive or phylum-specific, nor are they mutually exclusive, since some archaea belong to several groups. Nonetheless, they are a useful starting point for classification.[193]
Halophiles, including the genus Halobacterium, live in extremely saline environments such as
salt lakes and outnumber their bacterial counterparts at salinities greater than 20–25%.[137] Thermophiles grow best at temperatures above 45 °C (113 °F), in places such as hot springs; hyperthermophilic archaea grow optimally at temperatures greater than 80 °C (176 °F).[194] The archaeal Methanopyrus kandleri Strain 116 can even reproduce at 122 °C (252 °F), the highest recorded temperature of any organism.[195]
Other archaea exist in very acidic or alkaline conditions.[192] For example, one of the most extreme archaean acidophiles is Picrophilus torridus, which grows at pH 0, which is equivalent to thriving in 1.2
molarsulfuric acid.[196]
This resistance to extreme environments has made archaea the focus of speculation about the possible properties of
extraterrestrial life.[197] Some extremophile habitats are not dissimilar to those on
Mars,[198] leading to the suggestion that viable microbes could be transferred between planets in
meteorites.[199]
Recently, several studies have shown that archaea exist not only in mesophilic and thermophilic environments but are also present, sometimes in high numbers, at low temperatures as well. For example, archaea are common in cold oceanic environments such as polar seas.[200] Even more significant are the large numbers of archaea found throughout the world's oceans in non-extreme habitats among the
plankton community (as part of the
picoplankton).[201] Although these archaea can be present in extremely high numbers (up to 40% of the microbial biomass), almost none of these species have been isolated and studied in
pure culture.[202] Consequently, our understanding of the role of archaea in ocean ecology is rudimentary, so their full influence on global
biogeochemical cycles remains largely unexplored.[203] Some marine Thermoproteota are capable of
nitrification, suggesting these organisms may affect the oceanic
nitrogen cycle,[149] although these oceanic Thermoproteota may also use other sources of energy.[204]
Vast numbers of archaea are also found in the
sediments that cover the
sea floor, with these organisms making up the majority of living cells at depths over 1 meter below the ocean bottom.[205][206] It has been demonstrated that in all oceanic surface sediments (from 1,000- to 10,000-m water depth), the impact of viral infection is higher on archaea than on bacteria and virus-induced lysis of archaea accounts for up to one-third of the total microbial biomass killed, resulting in the release of ~0.3 to 0.5 gigatons of carbon per year globally.[207]
Archaea recycle elements such as
carbon,
nitrogen, and
sulfur through their various habitats.[208] Archaea carry out many steps in the
nitrogen cycle. This includes both reactions that remove nitrogen from ecosystems (such as
nitrate-based respiration and
denitrification) as well as processes that introduce nitrogen (such as nitrate assimilation and
nitrogen fixation).[209][210]
Researchers recently discovered archaeal involvement in
ammonia oxidation reactions. These reactions are particularly important in the oceans.[150][211] The archaea also appear crucial for ammonia oxidation in soils. They produce
nitrite, which other microbes then oxidize to
nitrate. Plants and other organisms consume the latter.[212]
In the
sulfur cycle, archaea that grow by oxidizing
sulfur compounds release this element from rocks, making it available to other organisms, but the archaea that do this, such as Sulfolobus, produce
sulfuric acid as a waste product, and the growth of these organisms in abandoned mines can contribute to
acid mine drainage and other environmental damage.[213]
In the
carbon cycle, methanogen archaea remove hydrogen and play an important role in the decay of organic matter by the populations of microorganisms that act as
decomposers in anaerobic ecosystems, such as sediments, marshes, and
sewage-treatment works.[214]
Mutualism is an interaction between individuals of different species that results in positive (beneficial) effects on per capita reproduction and/or survival of the interacting populations. One well-understood example of
mutualism is the interaction between
protozoa and
methanogenic archaea in the digestive tracts of animals that digest
cellulose, such as
ruminants and
termites.[220] In these anaerobic environments, protozoa break down plant cellulose to obtain energy. This process releases hydrogen as a waste product, but high levels of hydrogen reduce energy production. When methanogens convert hydrogen to methane, protozoa benefit from more energy.[221]
Some archaea are commensals, benefiting from an association without helping or harming the other organism. For example, the methanogen Methanobrevibacter smithii is by far the most common archaean in the
human flora, making up about one in ten of the prokaryotes in the human gut.[228] In termites and in humans, these methanogens may in fact be mutualists, interacting with other microbes in the gut to aid digestion.[229] Archaean communities associate with a range of other organisms, such as on the surface of
corals,[230] and in the region of soil that surrounds plant roots (the
rhizosphere).[231][232]
Parasitism
Although Archaea do not have a historical reputation of being pathogens, Archaea are often found with similar genomes to more common pathogens like E. coli,[233] showing metabolic links and evolutionary history with today's pathogens. Archaea have been inconsistently detected in clinical studies because of the lack of categorization of Archaea into more specific species.[234]
Extremophile archaea, particularly those resistant either to heat or to extremes of acidity and alkalinity, are a source of
enzymes that function under these harsh conditions.[235][236] These enzymes have found many uses. For example, thermostable
DNA polymerases, such as the
Pfu DNA polymerase from Pyrococcus furiosus, revolutionized
molecular biology by allowing the
polymerase chain reaction to be used in research as a simple and rapid technique for
cloning DNA. In industry,
amylases,
galactosidases and
pullulanases in other species of Pyrococcus that function at over 100 °C (212 °F) allow
food processing at high temperatures, such as the production of low
lactose milk and
whey.[237] Enzymes from these thermophilic archaea also tend to be very stable in organic solvents, allowing their use in environmentally friendly processes in
green chemistry that synthesize organic compounds.[236] This stability makes them easier to use in
structural biology. Consequently, the counterparts of bacterial or eukaryotic enzymes from extremophile archaea are often used in structural studies.[238]
In contrast with the range of applications of archaean enzymes, the use of the organisms themselves in biotechnology is less developed.
Methanogenic archaea are a vital part of
sewage treatment, since they are part of the community of microorganisms that carry out
anaerobic digestion and produce
biogas.[239] In
mineral processing, acidophilic archaea display promise for the extraction of metals from
ores, including
gold,
cobalt and
copper.[240]
Archaea host a new class of potentially useful
antibiotics. A few of these
archaeocins have been characterized, but hundreds more are believed to exist, especially within Haloarchaea and Sulfolobus. These compounds differ in structure from bacterial antibiotics, so they may have novel modes of action. In addition, they may allow the creation of new
selectable markers for use in archaeal molecular biology.[241]
^Göker, Markus; Oren, Aharon (22 January 2024). "Valid publication of names of two domains and seven kingdoms of prokaryotes". International Journal of Systematic and Evolutionary Microbiology. 74 (1).
doi:
10.1099/ijsem.0.006242. – this article represents the valid publication of the name Archaea. Although Woese proposed the name in 1990, the name was not valid until this article from 2024, hence the date.
^Moissl-Eichinger C, Pausan M, Taffner J, Berg G, Bang C, Schmitz RA (January 2018). "Archaea Are Interactive Components of Complex Microbiomes". Trends in Microbiology. 26 (1): 70–85.
doi:
10.1016/j.tim.2017.07.004.
PMID28826642.
^Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, Hugenholtz P (November 2018). "A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life". Nature Biotechnology. 36 (10): 996–1004.
doi:
10.1038/nbt.4229.
PMID30148503.
S2CID52093100.
^Stetter KO (1996). "Hyperthermophiles in the history of life". Ciba Foundation Symposium. 202: 1–10, discussion 11–8.
PMID9243007.
^
abcDeLong EF (December 1998). "Everything in moderation: archaea as 'non-extremophiles'". Current Opinion in Genetics & Development. 8 (6): 649–54.
doi:
10.1016/S0959-437X(98)80032-4.
PMID9914204.
^Theron J, Cloete TE (2000). "Molecular techniques for determining microbial diversity and community structure in natural environments". Critical Reviews in Microbiology. 26 (1): 37–57.
doi:
10.1080/10408410091154174.
PMID10782339.
S2CID5829573.
^
abRobertson CE, Harris JK, Spear JR, Pace NR (December 2005). "Phylogenetic diversity and ecology of environmental Archaea". Current Opinion in Microbiology. 8 (6): 638–642.
doi:
10.1016/j.mib.2005.10.003.
PMID16236543.
^Guy L, Ettema TJ (December 2011). "The archaeal 'TACK' superphylum and the origin of eukaryotes". Trends in Microbiology. 19 (12): 580–87.
doi:
10.1016/j.tim.2011.09.002.
PMID22018741.
^Göker, Markus; Oren, Aharon (11 September 2023). "Valid publication of four additional phylum names". International Journal of Systematic and Evolutionary Microbiology. 73 (9).
doi:
10.1099/ijsem.0.006024.
PMID37695645.
^Imachi, Hiroyuki; Nobu, Masaru K.; Kato, Shingo; Takaki, Yoshihiro; Miyazaki, Masayuki; Miyata, Makoto; Ogawara, Miyuki; Saito, Yumi; Sakai, Sanae; Tahara, Yuhei O.; Takano, Yoshinori; Tasumi, Eiji; Uematsu, Katsuyuki; Yoshimura, Toshihiro; Itoh, Takashi; Ohkuma, Moriya; Takai, Ken (5 July 2024). "Promethearchaeum syntrophicum gen. nov., sp. nov., an anaerobic, obligately syntrophic archaeon, the first isolate of the lineage 'Asgard' archaea, and proposal of the new archaeal phylum Promethearchaeota phyl. nov. and kingdom Promethearchaeati regn. nov". International Journal of Systematic and Evolutionary Microbiology. 74 (7). Society for General Microbiology.
doi:
10.1099/ijsem.0.006435.
ISSN1466-5034.
PMC 11316595.
PMID38967634.
^"Age of the Earth". U.S. Geological Survey. 1997.
Archived from the original on 23 December 2005. Retrieved 10 January 2006.
^
abcGupta RS (August 1998). "What are archaebacteria: life's third domain or monoderm prokaryotes related to gram-positive bacteria? A new proposal for the classification of prokaryotic organisms". Molecular Microbiology. 29 (3): 695–707.
doi:
10.1046/j.1365-2958.1998.00978.x.
PMID9723910.
S2CID41206658.
^Gogarten JP (November 1994). "Which is the most conserved group of proteins? Homology-orthology, paralogy, xenology, and the fusion of independent lineages". Journal of Molecular Evolution. 39 (5): 541–43.
Bibcode:
1994JMolE..39..541G.
doi:
10.1007/bf00173425.
PMID7807544.
S2CID44922755.
^Gupta RS (2005). "Molecular Sequences and the Early History of Life". In Sapp J (ed.). Microbial Phylogeny and Evolution: Concepts and Controversies. New York: Oxford University Press. pp. 160–183.
^
abLatorre A, Durban A, Moya A, Pereto J (2011).
"The role of symbiosis in eukaryotic evolution". In Gargaud M, López-Garcìa P, Martin H (eds.). Origins and Evolution of Life: An astrobiological perspective. Cambridge: Cambridge University Press. pp. 326–339.
ISBN978-0-521-76131-4.
Archived from the original on 24 March 2019. Retrieved 27 August 2017.
^Eme L, Spang A, Lombard J, Stairs CW, Ettema TJG (November 2017). "Archaea and the origin of eukaryotes". Nature Reviews. Microbiology. 15 (12): 711–723.
doi:
10.1038/nrmicro.2017.133.
PMID29123225.
S2CID8666687.
^Nickell S, Hegerl R, Baumeister W, Rachel R (January 2003). "Pyrodictium cannulae enter the periplasmic space but do not enter the cytoplasm, as revealed by cryo-electron tomography". Journal of Structural Biology. 141 (1): 34–42.
doi:
10.1016/S1047-8477(02)00581-6.
PMID12576018.
^Howland JL (2000). The Surprising Archaea: Discovering Another Domain of Life. Oxford: Oxford University Press. p. 32.
ISBN978-0-19-511183-5.
^Gophna U, Ron EZ, Graur D (July 2003). "Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events". Gene. 312: 151–63.
doi:
10.1016/S0378-1119(03)00612-7.
PMID12909351.
^Nguyen L, Paulsen IT, Tchieu J, Hueck CJ, Saier MH (April 2000). "Phylogenetic analyses of the constituents of Type III protein secretion systems". Journal of Molecular Microbiology and Biotechnology. 2 (2): 125–44.
PMID10939240.
^Ng SY, Chaban B, Jarrell KF (2006). "Archaeal flagella, bacterial flagella and type IV pili: a comparison of genes and posttranslational modifications". Journal of Molecular Microbiology and Biotechnology. 11 (3–5): 167–91.
doi:
10.1159/000094053.
PMID16983194.
S2CID30386932.
^Youssefian S, Rahbar N, Van Dessel S (May 2018). "Thermal conductivity and rectification in asymmetric archaeal lipid membranes". The Journal of Chemical Physics. 148 (17): 174901.
Bibcode:
2018JChPh.148q4901Y.
doi:
10.1063/1.5018589.
PMID29739208.
^Macalady JL, Vestling MM, Baumler D, Boekelheide N, Kaspar CW, Banfield JF (October 2004). "Tetraether-linked membrane monolayers in Ferroplasma spp: a key to survival in acid". Extremophiles. 8 (5): 411–19.
doi:
10.1007/s00792-004-0404-5.
PMID15258835.
S2CID15702103.
^
abcValentine DL (April 2007). "Adaptations to energy stress dictate the ecology and evolution of the Archaea". Nature Reviews. Microbiology. 5 (4): 316–23.
doi:
10.1038/nrmicro1619.
PMID17334387.
S2CID12384143.
^Zillig W (December 1991). "Comparative biochemistry of Archaea and Bacteria". Current Opinion in Genetics & Development. 1 (4): 544–51.
doi:
10.1016/S0959-437X(05)80206-0.
PMID1822288.
^Klocke M, Nettmann E, Bergmann I, Mundt K, Souidi K, Mumme J, et al. (August 2008). "Characterization of the methanogenic Archaea within two-phase biogas reactor systems operated with plant biomass". Systematic and Applied Microbiology. 31 (3): 190–205.
Bibcode:
2008SyApM..31..190K.
doi:
10.1016/j.syapm.2008.02.003.
PMID18501543.
^Mueller-Cajar O, Badger MR (August 2007). "New roads lead to Rubisco in archaebacteria". BioEssays. 29 (8): 722–24.
doi:
10.1002/bies.20616.
PMID17621634.
^Bryant DA, Frigaard NU (November 2006). "Prokaryotic photosynthesis and phototrophy illuminated". Trends in Microbiology. 14 (11): 488–96.
doi:
10.1016/j.tim.2006.09.001.
PMID16997562.
^Fröls S, White MF, Schleper C (February 2009). "Reactions to UV damage in the model archaeon Sulfolobus solfataricus". Biochemical Society Transactions. 37 (Pt 1): 36–41.
doi:
10.1042/BST0370036.
PMID19143598.
^
abBlohs M, Moissl-Eichinger C, Mahnert A, Spang A, Dombrowski N, Krupovic M, Klingl A (January 2019). "Archaea – An Introduction". In Schmidt TM (ed.). Encyclopedia of Microbiology (Fourth ed.). Academic Press. pp. 243–252.
doi:
10.1016/B978-0-12-809633-8.20884-4.
ISBN978-0-12-811737-8.
S2CID164553336.
^Ciaramella M, Napoli A, Rossi M (February 2005). "Another extreme genome: how to live at pH 0". Trends in Microbiology. 13 (2): 49–51.
doi:
10.1016/j.tim.2004.12.001.
PMID15680761.
^Davies PC (1996). "The Transfer of Viable Microorganisms Between Planets". In Bock GR, Goode JA (eds.). Ciba Foundation Symposium 202 – Evolution of Hydrothermal Ecosystems on Earth (And Mars?). Novartis Foundation Symposia. Vol. 202. pp. 304–14, discussion 314–17.
doi:
10.1002/9780470514986.ch16.
ISBN9780470514986.
PMID9243022.
^López-García P, López-López A, Moreira D, Rodríguez-Valera F (July 2001). "Diversity of free-living prokaryotes from a deep-sea site at the Antarctic Polar Front". FEMS Microbiology Ecology. 36 (2–3): 193–202.
Bibcode:
2001FEMME..36..193L.
doi:
10.1016/s0168-6496(01)00133-7 (inactive 1 November 2024).
PMID11451524.{{
cite journal}}: CS1 maint: DOI inactive as of November 2024 (
link)
^Coolen MJ, Abbas B, van Bleijswijk J, Hopmans EC, Kuypers MM, Wakeham SG, et al. (April 2007). "Putative ammonia-oxidizing Crenarchaeota in suboxic waters of the Black Sea: A basin-wide ecological study using 16S ribosomal and functional genes and membrane lipids". Environmental Microbiology. 9 (4): 1001–16.
Bibcode:
2007EnvMi...9.1001C.
doi:
10.1111/j.1462-2920.2006.01227.x.
hdl:1912/2034.
PMID17359272.
^Chaban B, Ng SY, Jarrell KF (February 2006). "Archaeal habitats—from the extreme to the ordinary". Canadian Journal of Microbiology. 52 (2): 73–116.
doi:
10.1139/w05-147.
PMID16541146.
^
abEgorova K, Antranikian G (December 2005). "Industrial relevance of thermophilic Archaea". Current Opinion in Microbiology. 8 (6): 649–55.
doi:
10.1016/j.mib.2005.10.015.
PMID16257257.
^Synowiecki J, Grzybowska B, Zdziebło A (2006). "Sources, properties and suitability of new thermostable enzymes in food processing". Critical Reviews in Food Science and Nutrition. 46 (3): 197–205.
doi:
10.1080/10408690590957296.
PMID16527752.
S2CID7208835.
^Shand RF, Leyva KJ (2008). "Archaeal Antimicrobials: An Undiscovered Country". In Blum P (ed.). Archaea: New Models for Prokaryotic Biology. Caister Academic Press.
ISBN978-1-904455-27-1.
Garrett RA, Klenk H (2005). Archaea: Evolution, Physiology and Molecular Biology. WileyBlackwell.
ISBN978-1-4051-4404-9.
Cavicchioli R (2007). Archaea: Molecular and Cellular Biology. American Society for Microbiology.
ISBN978-1-55581-391-8.
Blum P, ed. (2008). Archaea: New Models for Prokaryotic Biology. Caister Academic Press.
ISBN978-1-904455-27-1.
Lipps G (2008). "Archaeal Plasmids". Plasmids: Current Research and Future Trends. Caister Academic Press.
ISBN978-1-904455-35-6.
Sapp J (2009). The New Foundations of Evolution: On the Tree of Life. New York: Oxford University Press.
ISBN978-0-19-538850-3.
Schaechter M (2009). Archaea (Overview) in The Desk Encyclopedia of Microbiology (2nd ed.). San Diego and London: Elsevier Academic Press.
ISBN978-0-12-374980-2.
External links
Listen to this article (56 minutes)
This audio file was created from a revision of this article dated 29 May 2020 (2020-05-29), and does not reflect subsequent edits.