*A New Kind of Science* Information

*https://en.wikipedia.org/wiki/A_New_Kind_of_Science*

This article may have been created or edited in return for undisclosed payments, a violation of Wikipedia's
terms of use. It may require cleanup to comply with Wikipedia's
content policies, particularly
neutral point of view. (March 2021) |

Author | Stephen Wolfram |
---|---|

Country | United States |

Language | English |

Subject | Complex systems |

Genre | Non-fiction |

Publisher | Wolfram Media |

Publication date | 2002 |

Media type | |

Pages | 1197 (Hardcover) |

ISBN | 1-57955-008-8 |

OCLC | 856779719 |

Website | A New Kind of Science, online |

* A New Kind of Science* is a book by
Stephen Wolfram,

^{ [1]}published by his company Wolfram Research under the imprint Wolfram Media in 2002. It contains an empirical and systematic study of computational systems such as cellular automata. Wolfram calls these systems

*simple programs*and argues that the scientific philosophy and methods appropriate for the study of simple programs are relevant to other fields of science.

## Contents

This section needs additional citations for
verification. (April 2022) |

### Computation and its implications

The thesis of *A New Kind of Science* (*NKS*) is twofold: that the nature of
computation must be explored experimentally, and that the results of these experiments have great relevance to understanding the
physical world.^{
[2]}

### Simple programs

The basic subject of Wolfram's "new kind of science" is the study of simple abstract rules—essentially, elementary computer programs. In almost any class of a computational system, one very quickly finds instances of great complexity among its simplest cases (after a time series of multiple iterative loops, applying the same simple set of rules on itself, similar to a self-reinforcing cycle using a set of rules). This seems to be true regardless of the components of the system and the details of its setup. Systems explored in the book include, amongst others, cellular automata in one, two, and three dimensions; mobile automata; Turing machines in 1 and 2 dimensions; several varieties of substitution and network systems; recursive functions; nested recursive functions; combinators; tag systems; register machines; reversal-addition. For a program to qualify as simple, there are several requirements:

- Its operation can be completely explained by a simple graphical illustration.
- It can be completely explained in a few sentences of human language.
- It can be implemented in a computer language using just a few lines of code.
- The number of its possible variations is small enough so that all of them can be computed.

Generally, simple programs tend to have a very simple abstract framework. Simple cellular automata, Turing machines, and combinators are examples of such frameworks, while more complex cellular automata do not necessarily qualify as simple programs. It is also possible to invent new frameworks, particularly to capture the operation of natural systems. The remarkable feature of simple programs is that a significant percentage of them are capable of producing great complexity. Simply enumerating all possible variations of almost any class of programs quickly leads one to examples that do unexpected and interesting things. This leads to the question: if the program is so simple, where does the complexity come from? In a sense, there is not enough room in the program's definition to directly encode all the things the program can do. Therefore, simple programs can be seen as a minimal example of emergence. A logical deduction from this phenomenon is that if the details of the program's rules have little direct relationship to its behavior, then it is very difficult to directly engineer a simple program to perform a specific behavior. An alternative approach is to try to engineer a simple overall computational framework, and then do a brute-force search through all of the possible components for the best match.

Simple programs are capable of a remarkable range of behavior. Some have been proven to be
universal computers. Others exhibit properties familiar from traditional science, such as
thermodynamic behavior,
continuum behavior, conserved quantities,
percolation,
sensitive dependence on initial conditions, and others. They have been used as models of
traffic, material fracture,
crystal growth, biological growth, and various
sociological,
geological, and
ecological phenomena. Another feature of simple programs is that, according to the book, making them more complicated seems to have little effect on their overall
complexity. *A New Kind of Science* argues that this is evidence that simple programs are enough to capture the essence of almost any
complex system.

### Mapping and mining the computational universe

In order to study simple rules and their often-complex behaviour, Wolfram argues that it is necessary to systematically explore all of these computational systems and document what they do. He further argues that this study should become a new branch of science, like physics or chemistry. The basic goal of this field is to understand and characterize the computational universe using experimental methods.

The proposed new branch of scientific exploration admits many different forms of scientific production. For instance, qualitative classifications are often the results of initial forays into the computational jungle. On the other hand, explicit proofs that certain systems compute this or that function are also admissible. There are also some forms of production that are in some ways unique to this field of study. For example, the discovery of computational mechanisms that emerge in different systems but in bizarrely different forms.

Another type of production involves the creation of programs for the analysis of computational systems. In the *NKS* framework, these themselves should be simple programs, and subject to the same goals and methodology. An extension of this idea is that the human mind is itself a computational system, and hence providing it with raw data in as effective a way as possible is crucial to research. Wolfram believes that programs and their analysis should be visualized as directly as possible, and exhaustively examined by the thousands or more. Since this new field concerns abstract rules, it can in principle address issues relevant to other fields of science. However, in general Wolfram's idea is that novel ideas and mechanisms can be discovered in the computational universe, where they can be represented in their simplest forms, and then other fields can choose among these discoveries for those they find relevant.

### Systematic abstract science

While Wolfram advocates simple programs as a scientific discipline, he also argues that its methodology will revolutionize other fields of science. The basis of his argument is that the study of simple programs is the minimal possible form of science, grounded equally in both
abstraction and empirical experimentation. Every aspect of the methodology advocated in *NKS* is optimized to make experimentation as direct, easy, and meaningful as possible while maximizing the chances that the experiment will do something unexpected. Just as this methodology allows computational mechanisms to be studied in their simplest forms, Wolfram argues that the process of doing so engages with the mathematical basis of the physical world, and therefore has much to offer the sciences.

Wolfram argues that the computational realities of the universe make science hard for fundamental reasons. But he also argues that by understanding the importance of these realities, we can learn to use them in our favor. For instance, instead of
reverse engineering our theories from observation, we can
enumerate systems and then try to match them to the behaviors we observe. A major theme of *NKS* is investigating the structure of the possibility space. Wolfram argues that science is far too ad hoc, in part because the models used are too complicated and unnecessarily organized around the limited primitives of traditional mathematics. Wolfram advocates using models whose variations are enumerable and whose consequences are straightforward to compute and analyze.

### Philosophical underpinnings

#### Computational irreducibility

Wolfram argues that one of his achievements is in providing a coherent system of ideas that justifies computation as an organizing
principle of science. For instance, he argues that the concept of *
computational irreducibility* (that some complex computations are not amenable to short-cuts and cannot be "reduced"), is ultimately the reason why computational models of nature must be considered in addition to traditional
mathematical models. Likewise, his idea of intrinsic randomness generation—that natural systems can generate their own randomness, rather than using chaos theory or stochastic perturbations—implies that computational models do not need to include explicit randomness.

#### Principle of computational equivalence

Based on his experimental results, Wolfram developed the **principle of computational equivalence** (**PCE**): the principle states that
systems found in the
natural world can perform
computations up to a
maximal ("universal") level of
computational power. Most systems can attain this level. Systems, in principle, compute the same things as a computer. Computation is therefore simply a question of translating
input and outputs from one system to another. Consequently, most systems are computationally equivalent. Proposed examples of such systems are the workings of the human brain and the evolution of weather systems.

The principle can be restated as follows: almost all processes that are not obviously simple are of equivalent sophistication. From this principle, Wolfram draws an array of concrete deductions which he argues reinforce his theory. Possibly the most important among these is an explanation as to why we experience
randomness and
complexity: often, the systems we analyze are just as sophisticated as we are. Thus, complexity is not a special quality of systems, like for instance the concept of "heat," but simply a label for all systems whose computations are sophisticated. Wolfram argues that understanding this makes possible the "normal science" of the *NKS* paradigm.

### Applications and results

There are a number of specific results and ideas in the *NKS* book, and they can be organized into several themes. One common theme of examples and applications is demonstrating how little complexity it takes to achieve interesting behavior, and how the proper methodology can discover this behavior.

First, there are several cases where the *NKS* book introduces what was, during the book's composition, the simplest known system in some class that has a particular characteristic. Some examples include the first primitive recursive function that results in complexity, the smallest universal
Turing Machine, and the shortest
axiom for
propositional calculus. In a similar vein, Wolfram also demonstrates many simple programs that exhibit phenomena like
phase transitions,
conserved quantities, continuum behavior, and
thermodynamics that are familiar from traditional science. Simple
computational models of natural systems like
shell growth,
fluid turbulence, and
phyllotaxis are a final category of applications that fall in this theme.

Another common theme is taking facts about the computational universe as a whole and using them to reason about fields in a holistic way. For instance, Wolfram discusses how facts about the computational universe inform evolutionary theory, SETI, free will, computational complexity theory, and philosophical fields like ontology, epistemology, and even postmodernism.

Wolfram suggests that the theory of computational irreducibility may provide a resolution to the existence of free will in a nominally deterministic universe. He posits that the computational process in the brain of the being with free will is actually complex enough so that it cannot be captured in a simpler computation, due to the principle of computational irreducibility. Thus, while the process is indeed deterministic, there is no better way to determine the being's will than, in essence, to run the experiment and let the being exercise it.

The book also contains a number of individual results—both experimental and analytic—about what a particular automaton computes, or what its characteristics are, using some methods of analysis.

The book contains a new technical result in describing the
Turing completeness of the
Rule 110 cellular automaton. Very small Turing machines can simulate Rule 110, which Wolfram demonstrates using a 2-state 5-symbol
universal Turing machine. Wolfram conjectures that a particular
2-state 3-symbol Turing machine is universal. In 2007, as part of commemorating the book's fifth anniversary, Wolfram's company offered a $25,000 prize for proof that this Turing machine is universal.^{
[3]} Alex Smith, a computer science student from
Birmingham, UK, won the prize later that year by proving Wolfram's conjecture.^{
[4]}^{
[5]}

## Reception

The
neutrality of this section is
disputed. (December 2020) |

Periodicals gave *A New Kind of Science* coverage, including articles in *
The New York Times*,^{
[6]} *
Newsweek*,^{
[7]} *
Wired*,^{
[8]} and *
The Economist*.^{
[9]} Some scientists criticized the book as abrasive and arrogant, and perceived a fatal flaw—that simple systems such as cellular automata are not complex enough to describe the degree of complexity present in evolved systems, and observed that Wolfram ignored the research categorizing the complexity of systems. Although critics accept Wolfram's result showing universal computation, they view it as minor and dispute Wolfram's claim of a paradigm shift. Others found that the work contained valuable insights and refreshing ideas.^{
[10]}^{
[11]} Wolfram addressed his critics in a series of blog posts.^{
[12]}^{
[13]}

### Scientific philosophy

A tenet of *NKS* is that the simpler the system, the more likely a version of it will recur in a wide variety of more complicated contexts. Therefore, *NKS* argues that systematically exploring the space of simple programs will lead to a base of reusable knowledge. However, many scientists believe that of all possible parameters, only some actually occur in the universe. For instance, of all possible permutations of the symbols making up an equation, most will be essentially meaningless. *NKS* has also been criticized for asserting that the behavior of simple systems is somehow representative of all systems.

### Methodology

A common criticism of *NKS* is that it does not follow established
scientific methodology. For instance, *NKS* does not establish
rigorous mathematical definitions,^{
[14]} nor does it attempt to prove
theorems; and most formulas and equations are written in
Mathematica rather than standard notation.^{
[15]} Along these lines, *NKS* has also been criticized for being heavily visual, with much information conveyed by pictures that do not have formal meaning.^{
[11]} It has also been criticized for not using modern research in the field of
complexity, particularly the works that have studied complexity from a rigorous mathematical perspective. And it has been criticized for misrepresenting
chaos theory.

### Utility

*NKS* has been criticized for not providing specific results that would be immediately applicable to ongoing scientific research.^{
[11]} There has also been criticism, implicit and explicit, that the study of simple programs has little connection to the physical universe, and hence is of limited value.
Steven Weinberg has pointed out that no real world system has been explained using Wolfram's methods in a satisfactory fashion.^{
[16]} Mathematician
Steven G. Krantz wrote, "Just because Wolfram can cook up a cellular automaton that seems to produce the spot pattern on a leopard, may we safely conclude that he understands the mechanism by which the spots are produced on the leopard, or *why* the spots are there, or what function (evolutionary or mating or camouflage or other) they perform?"^{
[17]}

### Principle of computational equivalence (PCE)

The **principle of computational equivalence** (PCE) has been criticized for being vague, unmathematical, and for not making directly verifiable predictions.^{
[15]} It has also been criticized for being contrary to the spirit of research in mathematical logic and computational complexity theory, which seek to make fine-grained distinctions between levels of computational sophistication, and for wrongly conflating different kinds of universality property.^{
[15]} Moreover, critics such as
Ray Kurzweil have argued that it ignores the distinction between hardware and software; while two computers may be equivalent in power, it does not follow that any two programs they might run are also equivalent.^{
[18]} Others suggest it is little more than a rechristening of the
Church–Turing thesis.

### The fundamental theory (*NKS* Chapter 9)

Wolfram's speculations of a direction towards a fundamental theory of physics have been criticized as vague and obsolete.
Scott Aaronson, Professor of Computer Science at University of Texas Austin, also claims that Wolfram's methods cannot be compatible with both
special relativity and
Bell's theorem violations, and hence cannot explain the observed results of
Bell tests.^{
[19]}

Edward Fredkin and
Konrad Zuse pioneered the idea of a
computable universe, the former by writing a line in his book on how the world might be like a cellular automaton, and later further developed by Fredkin using a toy model called Salt.^{
[20]} It has been claimed that *NKS* tries to take these ideas as its own, but Wolfram's model of the universe is a rewriting network, and not a cellular automaton, as Wolfram himself has suggested a cellular automaton cannot account for relativistic features such as no absolute time frame.^{
[21]}
Jürgen Schmidhuber has also charged that his work on
Turing machine-computable
physics was stolen without attribution, namely his idea on enumerating possible Turing-computable universes.^{
[22]}

In a 2002 review of *NKS*, the Nobel laureate and elementary particle physicist
Steven Weinberg wrote, "Wolfram himself is a lapsed elementary particle physicist, and I suppose he can't resist trying to apply his experience with digital computer programs to the laws of nature. This has led him to the view (also considered in a 1981 paper by Richard Feynman) that nature is discrete rather than continuous. He suggests that space consists of a set of isolated points, like cells in a cellular automaton, and that even time flows in discrete steps. Following an idea of Edward Fredkin, he concludes that the universe itself would then be an automaton, like a giant computer. It's possible, but I can't see any motivation for these speculations, except that this is the sort of system that Wolfram and others have become used to in their work on computers. So might a carpenter, looking at the moon, suppose that it is made of wood."^{
[23]}

### Natural selection

Wolfram's claim that
natural selection is not the fundamental cause of complexity in biology has led journalist Chris Lavers to state that Wolfram does not understand the
theory of evolution.^{
[24]}

### Originality

*NKS* has been heavily criticized as not being original or important enough to justify its title and claims.

The authoritative manner in which *NKS* presents a vast number of examples and arguments has been criticized as leading the reader to believe that each of these ideas was original to Wolfram; in particular, one of the most substantial new technical results presented in the book, that the
rule 110 cellular automaton is
Turing complete, was not proven by Wolfram. Wolfram credits the proof to his research assistant,
Matthew Cook. ^{
[25]} However, the notes section at the end of his book acknowledges many of the discoveries made by these other scientists citing their names together with historical facts, although not in the form of a traditional bibliography section. Additionally, the idea that very simple rules often generate great complexity is already an established idea in science, particularly in
chaos theory and
complex systems.

## See also

- Digital physics
- Scientific reductionism
*Calculating Space*- Marcus Hutter's "Universal Artificial Intelligence" algorithm

## References

**^**Rosen, Judith (2003). "Weighing Wolfram's 'New Kind of Science'".*Publishers Weekly*.**^**The World According to Wolfram**^**"The Wolfram 2,3 Turing Machine Research Prize". Archived from the original on 15 May 2011. Retrieved 2011-03-31.**^**"The Wolfram 2,3 Turing Machine Is Universal!". Retrieved 2007-10-24.**^**"Technical Commentary [on Wolfram 2,3 Turing machine universality proof]". Retrieved 2007-10-24.**^**Johnson, George (9 June 2002). "'A New Kind of Science': You Know That Space-Time Thing? Never Mind".*The New York Times*. Retrieved 28 May 2009.**^**Levy, Stephen (27 May 2002). "Great Minds, Great Ideas".*Newsweek*. Retrieved 28 May 2009.**^**Levy, Stephen (June 2002). "The Man Who Cracked The Code to Everything ..."*Wired*. Archived from the original on 27 May 2009. Retrieved 28 May 2009.**^**"The science of everything".*The Economist*. 30 May 2002. Retrieved 28 May 2009.**^**Rucker, Rudy (November 2003). "Review: A New Kind of Science" (PDF).*American Mathematical Monthly*.**110**(9): 851–61. doi: 10.2307/3647819. JSTOR 3647819. Retrieved 28 May 2009.- ^
^{a}^{b}^{c}Berry, Michael; Ellis, John; Deutch, David (15 May 2002). "A Revolution or self indulgent hype? How top scientists view Wolfram" (PDF).*The Daily Telegraph*. Retrieved 14 August 2012. **^**Wolfram, Stephen (7 May 2012). "It's Been 10 Years: What's Happened with*A New Kind of Science*?".*Stephen Wolfram Blog*. Retrieved 14 August 2012.**^**Wolfram, Stephen (12 May 2012). "Living a Paradigm Shift: Looking Back on Reactions to*A New Kind of Science*".*Stephen Wolfram Blog*. Retrieved 14 August 2012.**^**Bailey, David (September 2002). "A Reclusive Kind of Science" (PDF).*Computing in Science and Engineering*: 79–81. Retrieved 20 March 2021.- ^
^{a}^{b}^{c}Gray, Lawrence (2003). "A Mathematician Looks at Wolfram's New Kind of Science" (PDF).*Notices of the AMS*.**50**(2): 200–211. **^**Weiss, Peter (2003). "In search of a scientific revolution: controversial genius Stephen Wolfram presses onward".*Science News*.**^**Krantz, Steven G. (2003). "Review of*A New Kind of Science*" (PDF).*Bulletin of the American Mathematical Society*.**40**(1): 143–150.**^**Kurzweil, Ray (13 May 2002). "Reflections on Stephen Wolfram's A New Kind of Science".*Kurzweil Accelerating Intelligence Blog*.**^**Aaronson, Scott (2002). "Book Review of*A New Kind of Science*(Postscript file)".*Quantum Information and Computation*.**2**(5): 410–423. doi: 10.26421/QIC2.5-7.**^**"ZUSE-FREDKIN-THESIS".*usf.edu*.**^**"Fundamental Physics: A New Kind of Science | Online by Stephen Wolfram".**^**Schmidhuber, Jürgen. "Origin of main ideas in Wolfram's book "A New Kind of Science"". CERN Courier.**^**Weinberg, S. (24 October 2002). "Is the Universe a Computer?".*The New York Review of Books*.**^**Lavers, Chris (3 August 2002). "How the cheetah got his spots".*The Guardian*. London. Retrieved 28 May 2009.**^**"Note (C) for the Rule 110 Cellular Automaton: A New Kind of Science | Online by Stephen Wolfram [Page 1115]".

## External links

- A New Kind of Science free E-Book
- What We've Learned from NKS YouTube playlist — extensive discussion of each NKS chapter; (As of 2022, Stephen Wolfram discusses the NKS chapters in view of recent developments. Wolfram Physics Project)