Timeline of biotechnology

From Wikipedia
https://en.wikipedia.org/wiki/Timeline_of_biotechnology

The historical application of biotechnology throughout time is provided below in order. These discoveries, inventions and modifications are evidence of the evolution of biotechnology since before the common era.

Before Common Era

Pre-20th Century

20th century''

21st century

2020

  • 5 February – Scientists develop a CRISPR-Cas12a-based gene editing system that can probe and control several genes at once and can implement logic gating to e.g. detect cancer cells and execute therapeutic immunomodulatory responses. [16] [17]
  • 4 March – Scientists report that they have developed a way to 3D bioprint graphene oxide with a protein. They demonstrate that this novel bioink can be used to recreate vascular-like structures. This may be used in the development of safer and more efficient drugs. [22] [23]
  • 4 March – Scientists report to have used CRISPR-Cas9 gene editing inside a human's body for the first time. They aim to restore vision for a patient with inherited Leber congenital amaurosis and state that it may take up to a month to see whether the procedure was successful. In an hour-long surgery study approved by government regulators doctors inject three drops of fluid containing viruses under the patient's retina. In earlier tests in human tissue, mice and monkeys scientists were able to correct half of the cells with the disease-causing mutation, which was more than what is needed to restore vision. Unlike germline editing these DNA modifications aren't inheritable. [24] [25] [26] [27]
  • 14 March – Scientists report in a preprint to have developed a CRISPR-based strategy, called PAC-MAN (Prophylactic Antiviral Crispr in huMAN cells), that can find and destroy viruses in vitro. However, they weren't able to test PAC-MAN on the actual SARS-CoV-2, use a targeting-mechanism that uses only a very limited RNA-region, haven't developed a system to deliver it into human cells and would need a lot of time until another version of it or a potential successor system might pass clinical trials. In the study published as a preprint they write that the CRISPR-Cas13d-based system could be used prophylactically as well as therapeutically and that it could be implemented rapidly to manage new pandemic coronavirus strains – and potentially any virus – as it could be tailored to other RNA-targets quickly, only requiring a small change. [30] [31] [32] [33] The paper was published on 29 April 2020. [34] [35]
  • 16 March – Researchers report that they have developed a new kind of CRISPR-Cas13d screening platform for effective guide RNA design to target RNA. They used their model to predict optimized Cas13 guide RNAs for all protein-coding RNA-transcripts of the human genome's DNA. Their technology could be used in molecular biology and in medical applications such as for better targeting of virus RNA or human RNA. Targeting human RNA after it has been transcribed from DNA, rather than DNA, would allow for more temporary effects than permanent changes to human genomes. The technology is made available to researchers through an interactive website and free and open source software and is accompanied by a guide on how to create guide RNAs to target the SARS-CoV-2 RNA genome. [36] [37]
  • 16 March – Scientists present new multiplexed CRISPR technology, called CHyMErA (Cas Hybrid for Multiplexed Editing and Screening Applications), that can be used to analyse which or how genes act together by simultaneously removing multiple genes or gene-fragments using both Cas9 and Cas12a. [38] [39]
  • 10 April – Scientists report to have achieved wireless control of adrenal hormone secretion in genetically unmodified rats through the use of injectable, magnetic nanoparticles (MNPs) and remotely applied alternating magnetic fields heats them up. Their findings may aid research of physiological and psychological impacts of stress and related treatments and present an alternative strategy for modulating peripheral organ function than problematic implantable devices. [40] [41]
  • 15 April – Scientists describe and visualize the atomical structure and mechanical action of the bacteria-killing bacteriocin R2 pyocin and construct engineered versions with different behaviours than the naturally occurring version. Their findings may aid the engineering of nanomachines such as for targeted antibiotics. [44] [45]
  • 8 July – Mitochondria are gene-edited for the first time, using a new kind of CRISPR-free base editor ( DdCBE), by a team of researchers. [65] [66]
8 July: Researchers report that they succeeded in using a genetically-altered variant of R. sulfidophilum to produce spidroins, the main proteins in spider silk. [67]
  • 10 July – Scientists report that after mice exercise their livers secrete the protein GPLD1, which is also elevated in elderly humans who exercise regularly, that this is associated with improved cognitive function in aged mice and that increasing the amount of GPLD1 produced by the mouse liver could yield many benefits of regular exercise for the brain. [69] [70]
  • 17 July – Scientists report that yeast cells of the same genetic material and within the same environment age in two distinct ways, describe a biomolecular mechanism that can determine which process dominates during aging and genetically engineer a novel aging route with substantially extended lifespan. [71] [72]
  • 18 September – Researchers report the development of two active guide RNA-only elements that, according to their study, may enable halting or deleting gene drives introduced into populations in the wild with CRISPR-Cas9 gene editing. The paper's senior author cautions that the two neutralizing systems they demonstrated in cage trials "should not be used with a false sense of security for field-implemented gene drives". [79] [80]
10 November: Scientists show that microorganisms could be employed to mine useful elements from basalt rocks in space. [85]
25 November: The development of a biotechnology for microbial reactors capable of producing oxygen as well as hydrogen is reported. [89]
30 November: The 50-year problem of protein structure prediction is reported to be largely solved with an AI algorithm. [91]
  • 2 December – The world's first regulatory approval for a cultivated meat product is awarded by the Government of Singapore. The chicken meat was grown in a bioreactor in a fluid of amino acids, sugar, and salt. [94] The chicken nuggets food products are ~70% lab-grown meat, while the remainder is made from mung bean proteins and other ingredients. The company pledged to strive for price parity with premium "restaurant" chicken servings. [95] [96]

2021

References

  1. ^ a b "Highlights in the History of Biotechnology" (PDF). St Louis Science Center. Archived from the original (PDF) on 23 January 2013. Retrieved 27 December 2012.
  2. ^ "Agriculture in Ancient Greece". World History Encyclopedia. Archived from the original on 30 December 2012. Retrieved 27 December 2012.
  3. ^ "Biotechnology Timeline". Biotechnology Institute of Washington DC. Retrieved 27 December 2012.[ permanent dead link]
  4. ^ "1973_Boyer". Genome News Network. Archived from the original on 20 September 2020. Retrieved 19 August 2015.
  5. ^ C A Hutchison, 3rd, S Phillips, M H Edgell, S Gillam, P Jahnke and M Smith (1978). "Mutagenesis at a specific position in a DNA sequence". J Biol Chem. 253 (18): 6551–6560. doi: 10.1016/S0021-9258(19)46967-6. PMID  681366.CS1 maint: multiple names: authors list ( link)
  6. ^ Fingas, Jon (16 April 2019). "CRISPR gene editing has been used on humans in the US". Engadget. Archived from the original on 16 April 2019. Retrieved 16 April 2019.
  7. ^ Staff (17 April 2019). "CRISPR has been used to treat US cancer patients for the first time". MIT Technology Review. Archived from the original on 17 April 2019. Retrieved 17 April 2019.
  8. ^ Anzalone, Andrew V.; Randolph, Peyton B.; Davis, Jessie R.; Sousa, Alexander A.; Koblan, Luke W.; Levy, Jonathan M.; Chen, Peter J.; Wilson, Christopher; Newby, Gregory A.; Raguram, Aditya; Liu, David R. (21 October 2019). "Search-and-replace genome editing without double-strand breaks or donor DNA". Nature. 576 (7785): 149–157. Bibcode: 2019Natur.576..149A. doi: 10.1038/s41586-019-1711-4. PMC  6907074. PMID  31634902.
  9. ^ Gallagher, James (2019-10-21). "Prime editing: DNA tool could correct 89% of genetic defects". BBC News. Archived from the original on 2019-10-21. Retrieved 21 October 2019.
  10. ^ "Scientists Create New, More Powerful Technique To Edit Genes". NPR. Archived from the original on 21 October 2019. Retrieved 21 October 2019.
  11. ^ "Nanoparticle chomps away plaques that cause heart attacks". Michigan State University. 27 January 2020. Archived from the original on 29 January 2020. Retrieved 31 January 2020.
  12. ^ "Nanoparticle helps eat away deadly arterial plaque". New Atlas. 28 January 2020. Archived from the original on 1 March 2020. Retrieved 13 April 2020.
  13. ^ Flores, Alyssa M.; Hosseini-Nassab, Niloufar; Jarr, Kai-Uwe; Ye, Jianqin; Zhu, Xingjun; Wirka, Robert; Koh, Ai Leen; Tsantilas, Pavlos; Wang, Ying; Nanda, Vivek; Kojima, Yoko; Zeng, Yitian; Lotfi, Mozhgan; Sinclair, Robert; Weissman, Irving L.; Ingelsson, Erik; Smith, Bryan Ronain; Leeper, Nicholas J. (February 2020). "Pro-efferocytic nanoparticles are specifically taken up by lesional macrophages and prevent atherosclerosis". Nature Nanotechnology. 15 (2): 154–161. Bibcode: 2020NatNa..15..154F. doi: 10.1038/s41565-019-0619-3. PMC  7254969. PMID  31988506.
  14. ^ "Fundamental beliefs about atherosclerosis overturned: Complications of artery-hardening condition are number one killer worldwide". ScienceDaily. Archived from the original on 2020-06-29. Retrieved 2020-07-12.
  15. ^ "The top 10 causes of death". www.who.int. Archived from the original on 2020-06-05. Retrieved 2020-01-26.
  16. ^ "New CRISPR-based tool can probe and control several genetic circuits at once". phys.org. Archived from the original on 2 March 2020. Retrieved 8 March 2020.
  17. ^ Kempton, Hannah R.; Goudy, Laine E.; Love, Kasey S.; Qi, Lei S. (5 February 2020). "Multiple Input Sensing and Signal Integration Using a Split Cas12a System". Molecular Cell. 78 (1): 184–191.e3. doi: 10.1016/j.molcel.2020.01.016. ISSN  1097-2765. PMID  32027839. Archived from the original on 16 February 2020. Retrieved 8 March 2020.
  18. ^ AFP. "US Trial Shows 3 Cancer Patients Had Their Genomes Altered Safely by CRISPR". ScienceAlert. Archived from the original on 2020-02-08. Retrieved 2020-02-09.
  19. ^ "CRISPR-edited immune cells for fighting cancer passed a safety test". Science News. 6 February 2020. Archived from the original on 25 July 2020. Retrieved 13 July 2020.
  20. ^ "CRISPR-Edited Immune Cells Can Survive and Thrive After Infusion into Cancer Patients – PR News". www.pennmedicine.org. Archived from the original on 13 July 2020. Retrieved 13 July 2020.
  21. ^ Stadtmauer, Edward A.; Fraietta, Joseph A.; Davis, Megan M.; Cohen, Adam D.; Weber, Kristy L.; Lancaster, Eric; Mangan, Patricia A.; Kulikovskaya, Irina; Gupta, Minnal; Chen, Fang; Tian, Lifeng; Gonzalez, Vanessa E.; Xu, Jun; Jung, In-young; Melenhorst, J. Joseph; Plesa, Gabriela; Shea, Joanne; Matlawski, Tina; Cervini, Amanda; Gaymon, Avery L.; Desjardins, Stephanie; Lamontagne, Anne; Salas-Mckee, January; Fesnak, Andrew; Siegel, Donald L.; Levine, Bruce L.; Jadlowsky, Julie K.; Young, Regina M.; Chew, Anne; Hwang, Wei-Ting; Hexner, Elizabeth O.; Carreno, Beatriz M.; Nobles, Christopher L.; Bushman, Frederic D.; Parker, Kevin R.; Qi, Yanyan; Satpathy, Ansuman T.; Chang, Howard Y.; Zhao, Yangbing; Lacey, Simon F.; June, Carl H. (28 February 2020). "CRISPR-engineered T cells in patients with refractory cancer". Science. 367 (6481): eaba7365. doi: 10.1126/science.aba7365. ISSN  0036-8075. PMID  32029687. S2CID  211048335. Archived from the original on 10 July 2020. Retrieved 13 July 2020.
  22. ^ "Biomaterial discovery enables 3-D printing of tissue-like vascular structures". phys.org. Archived from the original on 6 April 2020. Retrieved 5 April 2020.
  23. ^ Wu, Yuanhao; Okesola, Babatunde O.; Xu, Jing; Korotkin, Ivan; Berardo, Alice; Corridori, Ilaria; di Brocchetti, Francesco Luigi Pellerej; Kanczler, Janos; Feng, Jingyu; Li, Weiqi; Shi, Yejiao; Farafonov, Vladimir; Wang, Yiqiang; Thompson, Rebecca F.; Titirici, Maria-Magdalena; Nerukh, Dmitry; Karabasov, Sergey; Oreffo, Richard O. C.; Carlos Rodriguez-Cabello, Jose; Vozzi, Giovanni; Azevedo, Helena S.; Pugno, Nicola M.; Wang, Wen; Mata, Alvaro (4 March 2020). "Disordered protein-graphene oxide co-assembly and supramolecular biofabrication of functional fluidic devices". Nature Communications. 11 (1): 1182. Bibcode: 2020NatCo..11.1182W. doi: 10.1038/s41467-020-14716-z. ISSN  2041-1723. PMC  7055247. PMID  32132534.
  24. ^ "Doctors use gene editing tool Crispr inside body for first time". the Guardian. 4 March 2020. Archived from the original on 12 April 2020. Retrieved 6 April 2020.
  25. ^ "Doctors use CRISPR gene editing inside a person's body for first time". NBC News. Archived from the original on 6 March 2020. Retrieved 6 April 2020.
  26. ^ "Doctors try 1st CRISPR editing in the body for blindness". AP NEWS. 4 March 2020. Archived from the original on 6 April 2020. Retrieved 6 April 2020.
  27. ^ White, Franny. "OHSU performs first-ever CRISPR gene editing within human body". OHSU News. Retrieved 12 April 2020.
  28. ^ "Researchers establish new viable CRISPR-Cas12b system for plant genome engineering". phys.org. Archived from the original on 6 April 2020. Retrieved 6 April 2020.
  29. ^ Ming, Meiling; Ren, Qiurong; Pan, Changtian; He, Yao; Zhang, Yingxiao; Liu, Shishi; Zhong, Zhaohui; Wang, Jiaheng; Malzahn, Aimee A.; Wu, Jun; Zheng, Xuelian; Zhang, Yong; Qi, Yiping (March 2020). "CRISPR–Cas12b enables efficient plant genome engineering". Nature Plants. 6 (3): 202–208. doi: 10.1038/s41477-020-0614-6. PMID  32170285. S2CID  212643374.
  30. ^ Levy, Steven. "Could Crispr Be Humanity's Next Virus Killer?". Wired. Archived from the original on 24 March 2020. Retrieved 25 March 2020.
  31. ^ "Biochemist Explains How CRISPR Can Be Used to Fight COVID-19". Amanpour & Company. Archived from the original on 30 April 2020. Retrieved 3 April 2020.
  32. ^ "Can Crispr technology attack the coronavirus? | Bioengineering". bioengineering.stanford.edu. Archived from the original on 14 July 2020. Retrieved 3 April 2020.
  33. ^ Abbott, Timothy R.; Dhamdhere, Girija; Liu, Yanxia; Lin, Xueqiu; Goudy, Laine; Zeng, Leiping; Chemparathy, Augustine; Chmura, Stephen; Heaton, Nicholas S.; Debs, Robert; Pande, Tara; Endy, Drew; Russa, Marie La; Lewis, David B.; Qi, Lei S. (14 March 2020). "Development of CRISPR as a prophylactic strategy to combat novel coronavirus and influenza". bioRxiv: 2020.03.13.991307. doi: 10.1101/2020.03.13.991307.
  34. ^ "Scientists aim gene-targeting breakthrough against COVID-19". phys.org. Archived from the original on 17 June 2020. Retrieved 13 June 2020.
  35. ^ Abbott, Timothy R.; Dhamdhere, Girija; Liu, Yanxia; Lin, Xueqiu; Goudy, Laine; Zeng, Leiping; Chemparathy, Augustine; Chmura, Stephen; Heaton, Nicholas S.; Debs, Robert; Pande, Tara; Endy, Drew; Russa, Marie F. La; Lewis, David B.; Qi, Lei S. (14 May 2020). "Development of CRISPR as an Antiviral Strategy to Combat SARS-CoV-2 and Influenza". Cell. 181 (4): 865–876.e12. doi: 10.1016/j.cell.2020.04.020. ISSN  0092-8674. PMC  7189862. PMID  32353252. Archived from the original on 30 September 2020. Retrieved 13 June 2020.
  36. ^ "New kind of CRISPR technology to target RNA, including RNA viruses like coronavirus". phys.org. Archived from the original on 5 April 2020. Retrieved 3 April 2020.
  37. ^ Wessels, Hans-Hermann; Méndez-Mancilla, Alejandro; Guo, Xinyi; Legut, Mateusz; Daniloski, Zharko; Sanjana, Neville E. (16 March 2020). "Massively parallel Cas13 screens reveal principles for guide RNA design". Nature Biotechnology. 38 (6): 722–727. doi: 10.1038/s41587-020-0456-9. PMC  7294996. PMID  32518401.
  38. ^ "Scientists can now edit multiple genome fragments at a time". phys.org. Archived from the original on 7 April 2020. Retrieved 7 April 2020.
  39. ^ Gonatopoulos-Pournatzis, Thomas; Aregger, Michael; Brown, Kevin R.; Farhangmehr, Shaghayegh; Braunschweig, Ulrich; Ward, Henry N.; Ha, Kevin C. H.; Weiss, Alexander; Billmann, Maximilian; Durbic, Tanja; Myers, Chad L.; Blencowe, Benjamin J.; Moffat, Jason (16 March 2020). "Genetic interaction mapping and exon-resolution functional genomics with a hybrid Cas9–Cas12a platform". Nature Biotechnology. 38 (5): 638–648. doi: 10.1038/s41587-020-0437-z. PMID  32249828. S2CID  212731918.
  40. ^ "Researchers achieve remote control of hormone release using magnetic nanoparticles". phys.org. Archived from the original on 24 April 2020. Retrieved 16 May 2020.
  41. ^ Rosenfeld, Dekel; Senko, Alexander W.; Moon, Junsang; Yick, Isabel; Varnavides, Georgios; Gregureć, Danijela; Koehler, Florian; Chiang, Po-Han; Christiansen, Michael G.; Maeng, Lisa Y.; Widge, Alik S.; Anikeeva, Polina (1 April 2020). "Transgene-free remote magnetothermal regulation of adrenal hormones". Science Advances. 6 (15): eaaz3734. Bibcode: 2020SciA....6.3734R. doi: 10.1126/sciadv.aaz3734. PMC  7148104. PMID  32300655.
  42. ^ "Predicting the evolution of genetic mutations". phys.org. Archived from the original on 26 April 2020. Retrieved 16 May 2020.
  43. ^ Zhou, Juannan; McCandlish, David M. (14 April 2020). "Minimum epistasis interpolation for sequence-function relationships". Nature Communications. 11 (1): 1782. Bibcode: 2020NatCo..11.1782Z. doi: 10.1038/s41467-020-15512-5. PMC  7156698. PMID  32286265.
  44. ^ "Bactericidal nanomachine: Researchers reveal the mechanisms behind a natural bacteria killer". phys.org. Archived from the original on 29 April 2020. Retrieved 17 May 2020.
  45. ^ Ge, Peng; Scholl, Dean; Prokhorov, Nikolai S.; Avaylon, Jaycob; Shneider, Mikhail M.; Browning, Christopher; Buth, Sergey A.; Plattner, Michel; Chakraborty, Urmi; Ding, Ke; Leiman, Petr G.; Miller, Jeff F.; Zhou, Z. Hong (April 2020). "Action of a minimal contractile bactericidal nanomachine". Nature. 580 (7805): 658–662. Bibcode: 2020Natur.580..658G. doi: 10.1038/s41586-020-2186-z. PMC  7513463. PMID  32350467.
  46. ^ "Scientists create tiny devices that work like the human brain". The Independent. 20 April 2020. Archived from the original on 24 April 2020. Retrieved 17 May 2020.
  47. ^ "Researchers unveil electronics that mimic the human brain in efficient learning". phys.org. Archived from the original on 28 May 2020. Retrieved 17 May 2020.
  48. ^ Fu, Tianda; Liu, Xiaomeng; Gao, Hongyan; Ward, Joy E.; Liu, Xiaorong; Yin, Bing; Wang, Zhongrui; Zhuo, Ye; Walker, David J. F.; Joshua Yang, J.; Chen, Jianhan; Lovley, Derek R.; Yao, Jun (20 April 2020). "Bioinspired bio-voltage memristors". Nature Communications. 11 (1): 1861. Bibcode: 2020NatCo..11.1861F. doi: 10.1038/s41467-020-15759-y. PMC  7171104. PMID  32313096.
  49. ^ "Sustainable light achieved in living plants". phys.org. Archived from the original on 27 May 2020. Retrieved 18 May 2020.
  50. ^ "Scientists use mushroom DNA to produce permanently-glowing plants". New Atlas. 28 April 2020. Archived from the original on 9 May 2020. Retrieved 18 May 2020.
  51. ^ "Scientists create glowing plants using mushroom genes". the Guardian. 27 April 2020. Archived from the original on 10 May 2020. Retrieved 18 May 2020.
  52. ^ Wehner, Mike (29 April 2020). "Scientists use bioluminescent mushrooms to create glow-in-the-dark plants". New York Post. Archived from the original on 24 May 2020. Retrieved 18 May 2020.
  53. ^ Woodyatt, Amy. "Scientists create glow-in-the-dark plants". CNN. Archived from the original on 20 May 2020. Retrieved 23 May 2020.
  54. ^ Mitiouchkina, Tatiana; Mishin, Alexander S.; Somermeyer, Louisa Gonzalez; Markina, Nadezhda M.; Chepurnyh, Tatiana V.; Guglya, Elena B.; Karataeva, Tatiana A.; Palkina, Kseniia A.; Shakhova, Ekaterina S.; Fakhranurova, Liliia I.; Chekova, Sofia V.; Tsarkova, Aleksandra S.; Golubev, Yaroslav V.; Negrebetsky, Vadim V.; Dolgushin, Sergey A.; Shalaev, Pavel V.; Shlykov, Dmitry; Melnik, Olesya A.; Shipunova, Victoria O.; Deyev, Sergey M.; Bubyrev, Andrey I.; Pushin, Alexander S.; Choob, Vladimir V.; Dolgov, Sergey V.; Kondrashov, Fyodor A.; Yampolsky, Ilia V.; Sarkisyan, Karen S. (27 April 2020). "Plants with genetically encoded autoluminescence". Nature Biotechnology. 38 (8): 944–946. doi: 10.1038/s41587-020-0500-9. PMC  7610436. PMID  32341562. S2CID  216559981.
  55. ^ "New technique makes thousands of semi-synthetic photosynthesis cells". New Atlas. 11 May 2020. Archived from the original on 25 May 2020. Retrieved 12 June 2020.
  56. ^ Barras, Colin (7 May 2020). "Cyber-spinach turns sunlight into sugar". Nature. doi: 10.1038/d41586-020-01396-4. PMID  32393873. S2CID  218598753.
  57. ^ "Researchers develop an artificial chloroplast". phys.org. Archived from the original on 12 June 2020. Retrieved 12 June 2020.
  58. ^ Miller, Tarryn E.; Beneyton, Thomas; Schwander, Thomas; Diehl, Christoph; Girault, Mathias; McLean, Richard; Chotel, Tanguy; Claus, Peter; Cortina, Niña Socorro; Baret, Jean-Christophe; Erb, Tobias J. (8 May 2020). "Light-powered CO2 fixation in a chloroplast mimic with natural and synthetic parts" (PDF). Science. 368 (6491): 649–654. doi: 10.1126/science.aaz6802. PMID  32381722. S2CID  218552008.
  59. ^ "Synthetic red blood cells mimic natural ones, and have new abilities". phys.org. Archived from the original on 13 June 2020. Retrieved 13 June 2020.
  60. ^ Guo, Jimin; Agola, Jacob Ongudi; Serda, Rita; Franco, Stefan; Lei, Qi; Wang, Lu; Minster, Joshua; Croissant, Jonas G.; Butler, Kimberly S.; Zhu, Wei; Brinker, C. Jeffrey (11 May 2020). "Biomimetic Rebuilding of Multifunctional Red Blood Cells: Modular Design Using Functional Components". ACS Nano. 14 (7): 7847–7859. doi: 10.1021/acsnano.9b08714. PMID  32391687.
  61. ^ Page, Michael Le. "Three people with inherited diseases successfully treated with CRISPR". New Scientist. Archived from the original on 26 June 2020. Retrieved 1 July 2020.
  62. ^ "More early data revealed from landmark CRISPR gene editing human trial". New Atlas. 17 June 2020. Archived from the original on 23 June 2020. Retrieved 1 July 2020.
  63. ^ "A Year In, 1st Patient To Get Gene Editing For Sickle Cell Disease Is Thriving". NPR.org. Archived from the original on 30 June 2020. Retrieved 1 July 2020.
  64. ^ "CRISPR Therapeutics and Vertex Announce New Clinical Data for Investigational Gene-Editing Therapy CTX001™ in Severe Hemoglobinopathies at the 25th Annual European Hematology Association (EHA) Congress | CRISPR Therapeutics". crisprtx.gcs-web.com. Archived from the original on 28 June 2020. Retrieved 1 July 2020.
  65. ^ "The powerhouses inside cells have been gene-edited for the first time". New Scientist. 8 July 2020. Archived from the original on 14 July 2020. Retrieved 12 July 2020.
  66. ^ Mok, Beverly Y.; de Moraes, Marcos H.; Zeng, Jun; Bosch, Dustin E.; Kotrys, Anna V.; Raguram, Aditya; Hsu, FoSheng; Radey, Matthew C.; Peterson, S. Brook; Mootha, Vamsi K.; Mougous, Joseph D.; Liu, David R. (July 2020). "A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing". Nature. 583 (7817): 631–637. Bibcode: 2020Natur.583..631M. doi: 10.1038/s41586-020-2477-4. ISSN  1476-4687. PMC  7381381. PMID  32641830. Archived from the original on 16 July 2020.
  67. ^ a b "Spider silk made by photosynthetic bacteria". phys.org. Archived from the original on 7 August 2020. Retrieved 16 August 2020.
  68. ^ Foong, Choon Pin; Higuchi-Takeuchi, Mieko; Malay, Ali D.; Oktaviani, Nur Alia; Thagun, Chonprakun; Numata, Keiji (2020-07-08). "A marine photosynthetic microbial cell factory as a platform for spider silk production". Communications Biology. Springer Science and Business Media LLC. 3 (1): 357. doi: 10.1038/s42003-020-1099-6. ISSN  2399-3642. PMC  7343832. PMID  32641733. CC-BY icon.svg Text and images are available under a Creative Commons Attribution 4.0 International License Archived 2017-10-16 at the Wayback Machine.
  69. ^ "Brain benefits of exercise can be gained with a single protein". medicalxpress.com. Archived from the original on 20 August 2020. Retrieved 18 August 2020.
  70. ^ Horowitz, Alana M.; Fan, Xuelai; Bieri, Gregor; Smith, Lucas K.; Sanchez-Diaz, Cesar I.; Schroer, Adam B.; Gontier, Geraldine; Casaletto, Kaitlin B.; Kramer, Joel H.; Williams, Katherine E.; Villeda, Saul A. (10 July 2020). "Blood factors transfer beneficial effects of exercise on neurogenesis and cognition to the aged brain". Science. 369 (6500): 167–173. Bibcode: 2020Sci...369..167H. doi: 10.1126/science.aaw2622. ISSN  0036-8075. PMC  7879650. PMID  32646997. S2CID  220428681. Archived from the original on 9 August 2020.
  71. ^ "Researchers discover 2 paths of aging and new insights on promoting healthspan". phys.org. Archived from the original on 13 August 2020. Retrieved 17 August 2020.
  72. ^ Li, Yang; Jiang, Yanfei; Paxman, Julie; o'Laughlin, Richard; Klepin, Stephen; Zhu, Yuelian; Pillus, Lorraine; Tsimring, Lev S.; Hasty, Jeff; Hao, Nan (2020). "A programmable fate decision landscape underliessingle-cell aging in yeast". Science. 369 (6501): 325–329. Bibcode: 2020Sci...369..325L. doi: 10.1126/science.aax9552. PMC  7437498. PMID  32675375.
  73. ^ "Machine learning reveals recipe for building artificial proteins". phys.org. Archived from the original on 3 August 2020. Retrieved 17 August 2020.
  74. ^ Russ, William P.; Figliuzzi, Matteo; Stocker, Christian; Barrat-Charlaix, Pierre; Socolich, Michael; Kast, Peter; Hilvert, Donald; Monasson, Remi; Cocco, Simona; Weigt, Martin; Ranganathan, Rama (2020). "An evolution-based model for designing chorismatemutase enzymes". Science. 369 (6502): 440–445. Bibcode: 2020Sci...369..440R. doi: 10.1126/science.aba3304 (inactive 2021-01-20). PMID  32703877.CS1 maint: DOI inactive as of January 2021 ( link)
  75. ^ "Quest - Article - UPDATE: ACE-031 Clinical Trials in Duchenne MD". Muscular Dystrophy Association. 6 January 2016. Archived from the original on 21 September 2020. Retrieved 16 October 2020.
  76. ^ Attie, Kenneth M.; Borgstein, Niels G.; Yang, Yijun; Condon, Carolyn H.; Wilson, Dawn M.; Pearsall, Amelia E.; Kumar, Ravi; Willins, Debbie A.; Seehra, Jas S.; Sherman, Matthew L. (2013). "A single ascending-dose study of muscle regulator ace-031 in healthy volunteers". Muscle & Nerve. 47 (3): 416–423. doi: 10.1002/mus.23539. ISSN  1097-4598. PMID  23169607. S2CID  19956237. Retrieved 16 October 2020.
  77. ^ "'Mighty mice' stay musclebound in space, boon for astronauts". phys.org. Archived from the original on 1 October 2020. Retrieved 8 October 2020.
  78. ^ Lee, Se-Jin; Lehar, Adam; Meir, Jessica U.; Koch, Christina; Morgan, Andrew; Warren, Lara E.; Rydzik, Renata; Youngstrom, Daniel W.; Chandok, Harshpreet; George, Joshy; Gogain, Joseph; Michaud, Michael; Stoklasek, Thomas A.; Liu, Yewei; Germain-Lee, Emily L. (22 September 2020). "Targeting myostatin/activin A protects against skeletal muscle and bone loss during spaceflight". Proceedings of the National Academy of Sciences. 117 (38): 23942–23951. doi: 10.1073/pnas.2014716117. ISSN  0027-8424. PMC  7519220. PMID  32900939. Archived from the original on 7 October 2020. Retrieved 8 October 2020.
  79. ^ "Biologists create new genetic systems to neutralize gene drives". phys.org. Archived from the original on 9 October 2020. Retrieved 8 October 2020.
  80. ^ Xu, Xiang-Ru Shannon; Bulger, Emily A.; Gantz, Valentino M.; Klanseck, Carissa; Heimler, Stephanie R.; Auradkar, Ankush; Bennett, Jared B.; Miller, Lauren Ashley; Leahy, Sarah; Juste, Sara Sanz; Buchman, Anna; Akbari, Omar S.; Marshall, John M.; Bier, Ethan (18 September 2020). "Active Genetic Neutralizing Elements for Halting or Deleting Gene Drives". Molecular Cell. 80 (2): 246–262.e4. doi: 10.1016/j.molcel.2020.09.003. ISSN  1097-2765. PMID  32949493. Archived from the original on 14 October 2020. Retrieved 8 October 2020.
  81. ^ Carrington, Damian (28 September 2020). "New super-enzyme eats plastic bottles six times faster". The Guardian. Archived from the original on 12 October 2020. Retrieved 12 October 2020.
  82. ^ "Plastic-eating enzyme 'cocktail' heralds new hope for plastic waste". phys.org. Archived from the original on 11 October 2020. Retrieved 12 October 2020.
  83. ^ Knott, Brandon C.; Erickson, Erika; Allen, Mark D.; Gado, Japheth E.; Graham, Rosie; Kearns, Fiona L.; Pardo, Isabel; Topuzlu, Ece; Anderson, Jared J.; Austin, Harry P.; Dominick, Graham; Johnson, Christopher W.; Rorrer, Nicholas A.; Szostkiewicz, Caralyn J.; Copié, Valérie; Payne, Christina M.; Woodcock, H. Lee; Donohoe, Bryon S.; Beckham, Gregg T.; McGeehan, John E. (24 September 2020). "Characterization and engineering of a two-enzyme system for plastics depolymerization". Proceedings of the National Academy of Sciences. 117 (41): 25476–25485. doi: 10.1073/pnas.2006753117. ISSN  0027-8424. PMC  7568301. PMID  32989159. Archived from the original on 12 October 2020. Retrieved 12 October 2020. CC-BY icon.svg Text and images are available under a Creative Commons Attribution 4.0 International License Archived 2017-10-16 at the Wayback Machine.
  84. ^ Wu, Katherine J.; Peltier, Elian (7 October 2020). "Nobel Prize in Chemistry Awarded to 2 Scientists for Work on Genome Editing - Emmanuelle Charpentier and Jennifer A. Doudna developed the Crispr tool, which can alter the DNA of animals, plants and microorganisms with high precision". The New York Times. Archived from the original on 8 October 2020. Retrieved 7 October 2020.
  85. ^ a b Cockell, Charles S.; Santomartino, Rosa; Finster, Kai; Waajen, Annemiek C.; Eades, Lorna J.; Moeller, Ralf; Rettberg, Petra; Fuchs, Felix M.; Van Houdt, Rob; Leys, Natalie; Coninx, Ilse; Hatton, Jason; Parmitano, Luca; Krause, Jutta; Koehler, Andrea; Caplin, Nicol; Zuijderduijn, Lobke; Mariani, Alessandro; Pellari, Stefano S.; Carubia, Fabrizio; Luciani, Giacomo; Balsamo, Michele; Zolesi, Valfredo; Nicholson, Natasha; Loudon, Claire-Marie; Doswald-Winkler, Jeannine; Herová, Magdalena; Rattenbacher, Bernd; Wadsworth, Jennifer; Craig Everroad, R.; Demets, René (10 November 2020). "Space station biomining experiment demonstrates rare earth element extraction in microgravity and Mars gravity". Nature Communications. 11 (1): 5523. Bibcode: 2020NatCo..11.5523C. doi: 10.1038/s41467-020-19276-w. ISSN  2041-1723. PMC  7656455. PMID  33173035. Archived from the original on 21 November 2020. CC-BY icon.svg Available under CC BY 4.0 Archived 2017-10-16 at the Wayback Machine.
  86. ^ Crane, Leah. "Asteroid-munching microbes could mine materials from space rocks". New Scientist. Archived from the original on 7 December 2020. Retrieved 9 December 2020.
  87. ^ "TAU breakthrough may increase life expectancy in brain and ovarian cancers". Tel Aviv University. 18 November 2020. Archived from the original on 22 November 2020. Retrieved 23 November 2020.
  88. ^ Rosenblum, Daniel; Gutkin, Anna; Kedmi, Ranit; Ramishetti, Srinivas; Veiga, Nuphar; Jacobi, Ashley M.; Schubert, Mollie S.; Friedmann-Morvinski, Dinorah; Cohen, Zvi R.; Behlke, Mark A.; Lieberman, Judy; Peer, Dan (1 November 2020). "CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy". Science Advances. 6 (47): eabc9450. Bibcode: 2020SciA....6.9450R. doi: 10.1126/sciadv.abc9450. ISSN  2375-2548. PMC  7673804. PMID  33208369. S2CID  227068531. Archived from the original on 10 December 2020.
  89. ^ a b "Research creates hydrogen-producing living droplets, paving way for alternative future energy source". phys.org. Archived from the original on 16 December 2020. Retrieved 9 December 2020.
  90. ^ Xu, Zhijun; Wang, Shengliang; Zhao, Chunyu; Li, Shangsong; Liu, Xiaoman; Wang, Lei; Li, Mei; Huang, Xin; Mann, Stephen (25 November 2020). "Photosynthetic hydrogen production by droplet-based microbial micro-reactors under aerobic conditions". Nature Communications. 11 (1): 5985. doi: 10.1038/s41467-020-19823-5. ISSN  2041-1723. PMC  7689460. PMID  33239636. Archived from the original on 26 November 2020. CC-BY icon.svg Available under CC BY 4.0 Archived 2017-10-16 at the Wayback Machine.
  91. ^ a b "One of biology's biggest mysteries 'largely solved' by AI". BBC News. 30 November 2020. Archived from the original on 30 November 2020. Retrieved 30 November 2020.
  92. ^ "DeepMind AI cracks 50-year-old problem of protein folding". The Guardian. 30 November 2020. Archived from the original on 30 November 2020. Retrieved 30 November 2020.
  93. ^ "AlphaFold: a solution to a 50-year-old grand challenge in biology". DeepMind. 30 November 2020. Archived from the original on 30 November 2020. Retrieved 30 November 2020.
  94. ^ Shanker, Deena (October 22, 2019). "These $50 Chicken Nuggets Were Grown in a Lab". Bloomberg. Archived from the original on February 25, 2020. Retrieved February 27, 2020.
  95. ^ Corbyn, Zoë (January 19, 2020). "Out of the lab and into your frying pan: the advance of cultured meat". the Guardian. Archived from the original on February 11, 2020. Retrieved February 27, 2020.
  96. ^ Ives, Mike (2 December 2020). "Singapore Approves a Lab-Grown Meat Product, a Global First". The New York Times. Archived from the original on 22 January 2021. Retrieved 16 January 2021.
  97. ^ "Scientists build whole functioning thymus from human cells". Francis Crick Institute. 11 December 2020. Archived from the original on 14 December 2020. Retrieved 14 December 2020.
  98. ^ Campinoti, Sara; Gjinovci, Asllan; Ragazzini, Roberta; Zanieri, Luca; Ariza-McNaughton, Linda; Catucci, Marco; Boeing, Stefan; Park, Jong-Eun; Hutchinson, John C.; Muñoz-Ruiz, Miguel; Manti, Pierluigi G.; Vozza, Gianluca; Villa, Carlo E.; Phylactopoulos, Demetra-Ellie; Maurer, Constance; Testa, Giuseppe; Stauss, Hans J.; Teichmann, Sarah A.; Sebire, Neil J.; Hayday, Adrian C.; Bonnet, Dominique; Bonfanti, Paola (11 December 2020). "Reconstitution of a functional human thymus by postnatal stromal progenitor cells and natural whole-organ scaffolds". Nature Communications. 11 (1): 6372. Bibcode: 2020NatCo..11.6372C. doi: 10.1038/s41467-020-20082-7. ISSN  2041-1723. PMC  7732825. PMID  33311516. Archived from the original on 13 December 2020. CC-BY icon.svg Available under CC BY 4.0 Archived 2017-10-16 at the Wayback Machine.
  99. ^ "Gene-editing produces tenfold increase in superbug slaying antibiotics". EurekAlert!. 12 January 2021. Archived from the original on 13 January 2021. Retrieved 13 January 2021.
  100. ^ Devine, Rebecca; McDonald, Hannah P.; Qin, Zhiwei; Arnold, Corinne J.; Noble, Katie; Chandra, Govind; Wilkinson, Barrie; Hutchings, Matthew I. (12 January 2021). "Re-wiring the regulation of the formicamycin biosynthetic gene cluster to enable the development of promising antibacterial compounds". Cell Chemical Biology. 28 (4): 515–523.e5. doi: 10.1016/j.chembiol.2020.12.011. ISSN  2451-9456. PMID  33440167. Retrieved 13 February 2021.
  101. ^ "Scientists use lipid nanoparticles to precisely target gene editing to the liver". EurekAlert!. 1 March 2021. Retrieved 2 March 2021.
  102. ^ Qiu, Min; Glass, Zachary; Chen, Jinjin; Haas, Mary; Jin, Xin; Zhao, Xuewei; Rui, Xuehui; Ye, Zhongfeng; Li, Yamin; Zhang, Feng; Xu, Qiaobing (9 March 2021). "Lipid nanoparticle-mediated codelivery of Cas9 mRNA and single-guide RNA achieves liver-specific in vivo genome editing of Angptl3". Proceedings of the National Academy of Sciences. 118 (10). doi: 10.1073/pnas.2020401118. ISSN  0027-8424. Retrieved 29 April 2021.
  103. ^ "Unique CRISPR gene therapy offers opioid-free chronic pain treatment". New Atlas. 11 March 2021. Retrieved 18 April 2021.
  104. ^ Moreno, Ana M.; Alemán, Fernando; Catroli, Glaucilene F.; Hunt, Matthew; Hu, Michael; Dailamy, Amir; Pla, Andrew; Woller, Sarah A.; Palmer, Nathan; Parekh, Udit; McDonald, Daniella; Roberts, Amanda J.; Goodwill, Vanessa; Dryden, Ian; Hevner, Robert F.; Delay, Lauriane; Santos, Gilson Gonçalves dos; Yaksh, Tony L.; Mali, Prashant (10 March 2021). "Long-lasting analgesia via targeted in situ repression of NaV1.7 in mice". Science Translational Medicine. 13 (584). doi: 10.1126/scitranslmed.aay9056. ISSN  1946-6234. Retrieved 18 April 2021.
  105. ^ Bowler, Jacinta (16 March 2021). "Microbes Unknown to Science Discovered on The International Space Station". ScienceAlert. Retrieved 16 March 2021. CS1 maint: discouraged parameter ( link)
  106. ^ Bijlani, Swati; Singh, Nitin K.; Eedara, V. V. Ramprasad; Podile, Appa Rao; Mason, Christopher E.; Wang, Clay C. C.; Venkateswaran, Kasthuri (2021). "Methylobacterium ajmalii sp. nov., Isolated From the International Space Station". Frontiers in Microbiology. 12. doi: 10.3389/fmicb.2021.639396. ISSN  1664-302X. Retrieved 29 April 2021. CC-BY icon.svg Available under CC BY 4.0.
  107. ^ Lewis, Tanya. "Slovakia Offers a Lesson in How Rapid Testing Can Fight COVID". Scientific American. Retrieved 19 April 2021.
  108. ^ Pavelka, Martin; Van-Zandvoort, Kevin; Abbott, Sam; Sherratt, Katharine; Majdan, Marek; Group5, CMMID COVID-19 working; Analýz, Inštitút Zdravotných; Jarčuška, Pavol; Krajčí, Marek; Flasche, Stefan; Funk, Sebastian (23 March 2021). "The impact of population-wide rapid antigen testing on SARS-CoV-2 prevalence in Slovakia". Science. doi: 10.1126/science.abf9648. ISSN  0036-8075. Retrieved 19 April 2021.
  109. ^ "A third of global farmland at 'high' pesticide pollution risk". phys.org. Retrieved 22 April 2021.
  110. ^ Tang, Fiona H. M.; Lenzen, Manfred; McBratney, Alexander; Maggi, Federico (April 2021). "Risk of pesticide pollution at the global scale". Nature Geoscience. 14 (4): 206–210. doi: 10.1038/s41561-021-00712-5. ISSN  1752-0908. Retrieved 22 April 2021.