Distribution (mathematics)
This article may be
too long to read and navigate comfortably. (December 2020) 
Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative. Distributions are widely used in the theory of partial differential equations, where it may be easier to establish the existence of distributional solutions than classical solutions, or appropriate classical solutions may not exist. Distributions are also important in physics and engineering where many problems naturally lead to differential equations whose solutions or initial conditions are distributions, such as the Dirac delta function.
A function is normally thought of as acting on the points in its domain by "sending" a point x in its domain to the point Instead of acting on points, distribution theory reinterprets functions such as as acting on test functions in a certain way. Test functions are usually infinitely differentiable complexvalued (or sometimes realvalued) functions with compact support ( bump functions are examples of test functions). Many "standard functions" (meaning for example a function that is typically encountered in a Calculus course), say for instance a continuous map can be canonically reinterpreted as acting on test functions (instead of their usual interpretation as acting on points of their domain) via the action known as " integration against a test function"; explicitly, this means that "acts on" a test function g by "sending" g to the number This new action of is thus a complex (or real)valued map, denoted by whose domain is the space of test functions; this map turns out to have two additional properties^{ [note 1]} that make it into what is known as a distribution on Distributions that arise from "standard functions" in this way are the prototypical examples of a distributions. But there are many distributions that do not arise in this way and these distributions are known as "generalized functions." Examples include the Dirac delta function or some distributions that arise via the action of "integration of test functions against measures." However, by using various methods it is nevertheless still possible to reduce any arbitrary distribution down to a simpler family of related distributions that do arise via such actions of integration.
In applications to physics and engineering, the space of test functions usually consists of smooth functions with compact support that are defined on some given nonempty open subset This space of test functions is denoted by or and a distribution on U is by definition a linear functional on that is continuous when is given a topology called the canonical LF topology. This leads to the space of (all) distributions on U, usually denoted by (note the prime), which by definition is the space of all distributions on (that is, it is the continuous dual space of ); it is these distributions that are the main focus of this article.
There are other possible choices for the space of test functions, which lead to other different spaces of distributions. If then the use of Schwartz functions^{ [note 2]} as test functions gives rise to a certain subspace of whose elements are called tempered distributions. These are important because they allow the Fourier transform to be extended from "standard functions" to tempered distributions. The set of tempered distributions forms a vector subspace of the space of distributions and is thus one example of a space of distributions; there are many other spaces of distributions.
There also exist other major classes of test functions that are not subsets of such as spaces of analytic test functions, which produce very different classes of distributions. The theory of such distributions has a different character from the previous one because there are no analytic functions with nonempty compact support.^{ [note 3]} Use of analytic test functions lead to Sato's theory of hyperfunctions.
History
The practical use of distributions can be traced back to the use of Green functions in the 1830s to solve ordinary differential equations, but was not formalized until much later. According to Kolmogorov & Fomin (1957), generalized functions originated in the work of Sergei Sobolev ( 1936) on secondorder hyperbolic partial differential equations, and the ideas were developed in somewhat extended form by Laurent Schwartz in the late 1940s. According to his autobiography, Schwartz introduced the term "distribution" by analogy with a distribution of electrical charge, possibly including not only point charges but also dipoles and so on. Gårding (1997) comments that although the ideas in the transformative book by Schwartz (1951) were not entirely new, it was Schwartz's broad attack and conviction that distributions would be useful almost everywhere in analysis that made the difference.
Notation
The following notation will be used throughout this article:
 is a fixed positive integer and is a fixed nonempty open subset of Euclidean space
 denotes the natural numbers.
 will denote a nonnegative integer or
 If is a function then will denote its domain and the support of denoted by is defined to be the closure of the set in
 For two functions , the following notation defines a canonical
pairing:
 A
multiindex of size is an element in (given that is fixed, if the size of multiindices is omitted then the size should be assumed to be ). The length of a multiindex is defined as and denoted by Multiindices are particularly useful when dealing with functions of several variables, in particular we introduce the following notations for a given multiindex : We also introduce a partial order of all multiindices by if and only if for all When we define their multiindex binomial coefficient as:
 will denote a certain nonempty collection of compact subsets of (described in detail below).
Definitions of test functions and distributions
In this section, we will formally define realvalued distributions on U. With minor modifications, one can also define complexvalued distributions, and one can replace with any ( paracompact) smooth manifold.
Notation: Suppose
 Let denote the vector space of all ktimes continuously differentiable realvalued functions on U.
 For any compact subset let and both denote the vector space of all those functions such that
 Note that depends on both K and U but we will only indicate K, where in particular, if then the domain of is U rather than K. We will use the notation only when the notation risks being ambiguous.
 Clearly, every contains the constant 0 map, even if
 Let denote the set of all such that for some compact subset K of U.
 Equivalently, is the set of all such that has compact support.
 is equal to the union of all as ranges over
 If is a realvalued function on U, then is an element of if and only if is a bump function. Every realvalued test function on is always also a complexvalued test function on
Note that for all and any compact subsets K and L of U, we have:
Definition: Elements of are called test functions on U and is called the space of test function on U. We will use both and to denote this space.
Distributions on U are defined to be the continuous linear functionals on when this vector space is endowed with a particular topology called the canonical LFtopology. This topology is unfortunately not easy to define but it is nevertheless still possible to characterize distributions in a way so that no mention of the canonical LFtopology is made.
Proposition: If T is a linear functional on then the T is a distribution if and only if the following equivalent conditions are satisfied:
 For every compact subset there exist constants and such that for all ^{
[1]}
 For every compact subset there exist constants and such that for all with support contained in ^{
[2]}
 For any compact subset and any sequence in if converges uniformly to zero on for all multiindices , then
The above characterizations can be used to determine whether or not a linear functional is a distribution, but more advanced uses of distributions and test functions (such as applications to differential equations) is limited if no topologies are placed on and To define the space of distributions we must first define the canonical LFtopology, which in turn requires that several other locally convex topological vector spaces (TVSs) be defined first. First, a ( nonnormable) topology on will be defined, then every will be endowed with the subspace topology induced on it by and finally the ( nonmetrizable) canonical LFtopology on will be defined. The space of distributions, being defined as the continuous dual space of is then endowed with the (nonmetrizable) strong dual topology induced by and the canonical LFtopology (this topology is a generalization of the usual operator norm induced topology that is placed on the continuous dual spaces of normed spaces). This finally permits consideration of more advanced notions such as convergence of distributions (both sequences and nets), various (sub)spaces of distributions, and operations on distributions, including extending differential equations to distributions.
 Choice of compact sets
Throughout, will be any collection of compact subsets of such that (1) and (2) for any compact there exists some such that The most common choices for are:
 The set of all compact subsets of or
 A set where and for all i, and is a relatively compact nonempty open subset of (here, "relatively compact" means that the closure of in either U or is compact).
We make into a directed set by defining if and only if Note that although the definitions of the subsequently defined topologies explicitly reference in reality they do not depend on the choice of that is, if and are any two such collections of compact subsets of then the topologies defined on and by using in place of are the same as those defined by using in place of
Topology on C^{k}(U)
We now introduce the seminorms that will define the topology on Different authors sometimes use different families of seminorms so we list the most common families below. However, the resulting topology is the same no matter which family is used.
Suppose and is an arbitrary compact subset of Suppose an integer such that ^{ [note 4]} and is a multiindex with length For define:while for we define all the functions above to be the constant 0 map.
Each of the functions above are nonnegative valued^{ [note 5]} seminorms on
Each of the following families of seminorms generates the same locally convex vector topology on :
Assumption: We will henceforth assume that is endowed with the locally convex topology defined by any (or equivalently, all) of the families of seminorms described above.
With this topology, becomes a locally convex ( nonnormable) Fréchet space and all of the seminorms defined above are continuous on this space. All of the seminorms defined above are continuous functions on Under this topology, a net in converges to if and only if for every multiindex with and every the net of partial derivatives converges uniformly to on ^{ [3]} For any any (von Neumann) bounded subset of is a relatively compact subset of ^{ [4]} In particular, a subset of is bounded if and only if it is bounded in for all ^{ [4]} The space is a Montel space if and only if ^{ [5]}
The topology on is the superior limit of the subspace topologies induced on by the TVSs as i ranges over the nonnegative integers.^{ [3]} A subset of is open in this topology if and only if there exists such that is open when is endowed with the subspace topology induced on it by
 Metric defining the topology
If the family of compact sets satisfies and for all then a complete translationinvariant metric on can be obtained by taking a suitable countable Fréchet combination of any one of the above families. For example, using the seminorms results in the metric
Often, it is easier to just consider seminorms.
Topology on C^{k}(K)
As before, fix Recall that if is any compact subset of then
Assumption: For any compact subset we will henceforth assume that is endowed with the subspace topology it inherits from the Fréchet space
For any compact subset is a closed subspace of the Fréchet space and is thus also a Fréchet space. For all compact satisfying denote the inclusion map by Then this map is a linear embedding of TVSs (that is, it is a linear map that is also a topological embedding) whose image (or "range") is closed in its codomain; said differently, the topology on is identical to the subspace topology it inherits from and also is a closed subset of The interior of relative to is empty.^{ [6]}
If is finite then is a Banach space^{ [7]} with a topology that can be defined by the norm
And when then is even a Hilbert space.^{ [7]} The space is a distinguished Schwartz Montel space so if then it is not normable and thus not a Banach space (although like all other it is a Fréchet space).
Trivial extensions and independence of C^{k}(K)'s topology from U
The definition of depends on U so we will let denote the topological space which by definition is a topological subspace of Suppose is an open subset of containing Given its trivial extension to V is by definition, the function defined by:
so that Let denote the map that sends a function in to its trivial extension on V. This map is a linear injection and for every compact subset we have where is the vector subspace of consisting of maps with support contained in (since is also a compact subset of ). It follows that If I is restricted to then the following induced linear map is a homeomorphism (and thus a TVSisomorphism):
and thus the next two maps (which like the previous map are defined by ) are topological embeddings:
(the topology on is the canonical LF topology, which is defined later). Using we identify with its image in Because through this identification, can also be considered as a subset of Importantly, the subspace topology inherits from (when it is viewed as a subset of ) is identical to the subspace topology that it inherits from (when is viewed instead as a subset of via the identification). Thus the topology on is independent of the open subset U of that contains K.^{ [6]} This justifies the practice of written instead of
Canonical LF topology
Recall that denote all those functions in that have compact support in where note that is the union of all as K ranges over Moreover, for every k, is a dense subset of The special case when gives us the space of test functions.
is called the space of test functions on and it may also be denoted by
This section defines the canonical LF topology as a
direct limit. It is also possible to define this topology in terms of its neighborhoods of the origin, which is described afterwards.
 Topology defined by direct limits
For any two sets K and L, we declare that if and only if which in particular makes the collection of compact subsets of U into a directed set (we say that such a collection is directed by subset inclusion). For all compact satisfying there are inclusion maps
Recall from above that the map is a topological embedding. The collection of maps
forms a direct system in the category of locally convex topological vector spaces that is directed by (under subset inclusion). This system's direct limit (in the category of locally convex TVSs) is the pair where are the natural inclusions and where is now endowed with the (unique) strongest locally convex topology making all of the inclusion maps continuous.
The canonical LF topology on is the finest locally convex topology on making all of the inclusion maps continuous (where K ranges over ).
Assumption: As is common in mathematics literature, this article will henceforth assume that is endowed with its canonical LF topology (unless explicitly stated otherwise).
 Topology defined by neighborhoods of the origin
If U is a convex subset of then U is a neighborhood of the origin in the canonical LF topology if and only if it satisfies the following condition:

For all is a neighborhood of the origin in
(CN)

Note that any convex set satisfying this condition is necessarily absorbing in Since the topology of any topological vector space is translationinvariant, any TVStopology is completely determined by the set of neighborhood of the origin. This means that one could actually define the canonical LF topology by declaring that a convex balanced subset U is a neighborhood of the origin if and only if it satisfies condition CN.
 Topology defined via differential operators
A linear differential operator in U with smooth coefficients is a sum
where and all but finitely many of are identically 0. The integer is called the order of the differential operator If is a linear differential operator of order k then it induces a canonical linear map defined by where we shall reuse notation and also denote this map by ^{ [8]}
For any the canonical LF topology on is the weakest locally convex TVS topology making all linear differential operators in U of order into continuous maps from into ^{ [8]}
Properties of the canonical LF topology
 Canonical LF topology's independence from
One benefit of defining the canonical LF topology as the direct limit of a direct system is that we may immediately use the universal property of direct limits. Another benefit is that we can use wellknown results from category theory to deduce that the canonical LF topology is actually independent of the particular choice of the directed collection of compact sets. And by considering different collections (in particular, those mentioned at the beginning of this article), we may deduce different properties of this topology. In particular, we may deduce that the canonical LF topology makes into a Hausdorff locally convex strict LFspace (and also a strict LBspace if ), which of course is the reason why this topology is called "the canonical LF topology" (see this footnote for more details).^{ [note 6]}
 Universal property
From the universal property of direct limits, we know that if is a linear map into a locally convex space Y (not necessarily Hausdorff), then u is continuous if and only if u is bounded if and only if for every the restriction of u to is continuous (or bounded).^{ [9]}^{ [10]}
 Dependence of the canonical LF topology on U
Suppose V is an open subset of containing Let denote the map that sends a function in to its trivial extension on V (which was defined above). This map is a continuous linear map.^{ [11]} If (and only if) then is not a dense subset of and is not a topological embedding.^{ [11]} Consequently, if then the transpose of is neither onetoone nor onto.^{ [11]}
 Bounded subsets
A subset B of is bounded in if and only if there exists some such that and B is a bounded subset of ^{ [10]} Moreover, if is compact and then S is bounded in if and only if it is bounded in For any any bounded subset of (resp. ) is a relatively compact subset of (resp. ), where ^{ [10]}
 Nonmetrizability
For all compact the interior of in is empty so that is of the first category in itself. It follows from Baire's theorem that is not metrizable and thus also not normable (see this footnote^{ [note 7]} for an explanation of how the nonmetrizable space can be complete even though it does not admit a metric). The fact that is a nuclear Montel space makes up for the nonmetrizability of (see this footnote for a more detailed explanation).^{ [note 8]}
 Relationships between spaces
Using the universal property of direct limits and the fact that the natural inclusions are all topological embedding, one may show that all of the maps are also topological embeddings. Said differently, the topology on is identical to the subspace topology that it inherits from where recall that 's topology was defined to be the subspace topology induced on it by In particular, both and induces the same subspace topology on However, this does not imply that the canonical LF topology on is equal to the subspace topology induced on by ; these two topologies on are in fact never equal to each other since the canonical LF topology is never metrizable while the subspace topology induced on it by is metrizable (since recall that is metrizable). The canonical LF topology on is actually strictly finer than the subspace topology that it inherits from (thus the natural inclusion is continuous but not a topological embedding).^{ [7]}
Indeed, the canonical LF topology is so fine that if denotes some linear map that is a "natural inclusion" (such as or or other maps discussed below) then this map will typically be continuous, which as is shown below, is ultimately the reason why locally integrable functions, Radon measures, etc. all induce distributions (via the transpose of such a "natural inclusion"). Said differently, the reason why there are so many different ways of defining distributions from other spaces ultimately stems from how very fine the canonical LF topology is. Moreover, since distributions are just continuous linear functionals on the fine nature of the canonical LF topology means that more linear functionals on end up being continuous ("more" means as compared to a coarser topology that we could have placed on such as for instance, the subspace topology induced by some which although it would have made metrizable, it would have also resulted in fewer linear functionals on being continuous and thus there would have been fewer distributions; moreover, this particular coarser topology also has the disadvantage of not making into a complete TVS^{ [12]}).
 Other properties
 The differentiation map is a surjective continuous linear operator.^{ [13]}
 The bilinear multiplication map given by is not continuous; it is however, hypocontinuous.^{ [14]}
Distributions
As discussed earlier, continuous linear functionals on a are known as distributions on U. Thus the set of all distributions on U is the continuous dual space of which when endowed with the strong dual topology is denoted by
By definition, a distribution on U is defined to be a continuous linear functional on Said differently, a distribution on U is an element of the continuous dual space of when is endowed with its canonical LF topology.
We have the canonical duality pairing between a distribution T on U and a test function which is denoted using angle brackets by
One interprets this notation as the distribution T acting on the test function to give a scalar, or symmetrically as the test function acting on the distribution T.
 Characterizations of distributions
Proposition. If T is a linear functional on then the following are equivalent:
 T is a distribution;
 Definition: T is continuous;
 T is continuous at the origin;
 T is uniformly continuous;
 T is a bounded operator;
 T is
sequentially continuous;
 explicitly, for every sequence in that converges in to some ^{ [note 9]}
 T is
sequentially continuous at the origin; in other words, T maps null sequences^{
[note 10]} to null sequences;
 explicitly, for every sequence in that converges in to the origin (such a sequence is called a null sequence),
 a null sequence is by definition a sequence that converges to the origin;
 T maps null sequences to bounded subsets;
 explicitly, for every sequence in that converges in to the origin, the sequence is bounded;
 T maps Mackey convergence null sequences^{
[note 11]} to bounded subsets;
 explicitly, for every Mackey convergent null sequence in the sequence is bounded;
 a sequence is said to be Mackey convergent to 0 if there exists a divergent sequence of positive real number such that the sequence is bounded; every sequence that is Mackey convergent to 0 necessarily converges to the origin (in the usual sense);
 The kernel of T is a closed subspace of
 The graph of T is closed;
 There exists a continuous seminorm g on such that
 There exists a constant a collection of continuous seminorms, that defines the canonical LF topology of and a finite subset such that ^{ [note 12]}
 For every compact subset there exist constants and such that for all ^{
[1]}
 For every compact subset there exist constants and such that for all with support contained in ^{
[15]}
 For any compact subset and any sequence in if converges uniformly to zero for all multiindices p, then
 Any of the three statements immediately above (i.e. statements 14, 15, and 16) but with the additional requirement that compact set K belongs to
Topology on the space of distributions
Definition and notation: The space of distributions on U, denoted by is the continuous dual space of endowed with the topology of uniform convergence on bounded subsets of ^{ [7]} More succinctly, the space of distributions on U is
The topology of uniform convergence on bounded subsets is also called the strong dual topology.^{ [note 13]} This topology is chosen because it is with this topology that becomes a nuclear Montel space and it is with this topology that the kernels theorem of Schwartz holds.^{ [16]} No matter what dual topology is placed on ^{ [note 14]} a sequence of distributions converges in this topology if and only if it converges pointwise (although this need not be true of a net). No matter which topology is chosen, will be a non metrizable, locally convex topological vector space. The space is separable^{ [17]} and has the strong Pytkeev property^{ [18]} but it is neither a kspace^{ [18]} nor a sequential space,^{ [17]} which in particular implies that it is not metrizable and also that its topology can not be defined using only sequences.
Topological properties
 Topological vector space categories
The canonical LF topology makes into a complete distinguished strict LFspace (and a strict LBspace if and only if ^{ [19]}), which implies that is a meager subset of itself.^{ [20]} Furthermore, as well as its strong dual space, is a complete Hausdorff locally convex barrelled bornological Mackey space. The strong dual of is a Fréchet space if and only if so in particular, the strong dual of which is the space of distributions on U, is not metrizable (note that the weak* topology on also is not metrizable and moreover, it further lacks almost all of the nice properties that the strong dual topology gives ).
The three spaces and the Schwartz space as well as the strong duals of each of these three spaces, are complete nuclear^{ [21]} Montel^{ [22]} bornological spaces, which implies that all six of these locally convex spaces are also paracompact^{ [23]} reflexive barrelled Mackey spaces. The spaces and are both distinguished Fréchet spaces. Moreover, both and are Schwartz TVSs.
Convergent sequences
 Convergent sequences and their insufficiency to describe topologies
The strong dual spaces of and are sequential spaces but not FréchetUrysohn spaces.^{ [17]} Moreover, neither the space of test functions nor its strong dual is a sequential space (not even an Ascoli space),^{ [17]}^{ [24]} which in particular implies that their topologies can not be defined entirely in terms of convergent sequences.
A sequence in converges in if and only if there exists some such that contains this sequence and this sequence converges in ; equivalently, it converges if and only if the following two conditions hold:^{ [25]}
 There is a compact set containing the supports of all
 For each multiindex the sequence of partial derivatives tends uniformly to
Neither the space nor its strong dual is a sequential space,^{ [17]}^{ [24]} and consequently, their topologies can not be defined entirely in terms of convergent sequences. For this reason, the above characterization of when a sequence converges is not enough to define the canonical LF topology on The same can be said of the strong dual topology on
 What sequences do characterize
Nevertheless, sequences do characterize many important properties, as we now discuss. It is known that in the dual space of any Montel space, a sequence converges in the strong dual topology if and only if it converges in the weak* topology,^{ [26]} which in particular, is the reason why a sequence of distributions converges (in the strong dual topology) if and only if it converges pointwise (this leads many authors to use pointwise convergence to actually define the convergence of a sequence of distributions; this is fine for sequences but it does not extend to the convergence of nets of distributions since a net may converge pointwise but fail to convergence in the strong dual topology).
Sequences characterize continuity of linear maps valued in locally convex space. Suppose X is a locally convex bornological space (such as any of the six TVSs mentioned earlier). Then a linear map into a locally convex space Y is continuous if and only if it maps null sequences^{ [note 10]} in X to bounded subsets of Y.^{ [note 15]} More generally, such a linear map is continuous if and only if it maps Mackey convergent null sequences^{ [note 11]} to bounded subsets of So in particular, if a linear map into a locally convex space is sequentially continuous at the origin then it is continuous.^{ [27]} However, this does not necessarily extend to nonlinear maps and/or to maps valued in topological spaces that are not locally convex TVSs.
For every is sequentially dense in ^{ [28]} Furthermore, is a sequentially dense subset of (with its strong dual topology)^{ [29]} and also a sequentially dense subset of the strong dual space of ^{ [29]}
 Sequences of distributions
A sequence of distributions converges with respect to the weak* topology on to a distribution T if and only if
for every test function For example, if is the function
and is the distribution corresponding to then
as so δ in Thus, for large the function can be regarded as an approximation of the Dirac delta distribution.
 Other properties
 The strong dual space of is TVS isomorphic to via the canonical TVSisomorphism defined by sending to value at (that is, to the linear functional on defined by sending to );
 On any bounded subset of the weak and strong subspace topologies coincide; the same is true for ;
 Every weakly convergent sequence in is strongly convergent (although this does not extend to nets).
Localization of distributions
There is no way to define the value of a distribution in at a particular point of U. However, as is the case with functions, distributions on U restrict to give distributions on open subsets of U. Furthermore, distributions are locally determined in the sense that a distribution on all of U can be assembled from a distribution on an open cover of U satisfying some compatibility conditions on the overlaps. Such a structure is known as a sheaf.
Restrictions to an open subset
Let U and V be open subsets of with . Let be the operator which extends by zero a given smooth function compactly supported in V to a smooth function compactly supported in the larger set U. The transpose of is called the restriction mapping and is denoted by
The map is a continuous injection where if then it is not a topological embedding and its range is not dense in which implies that this map's transpose is neither injective nor surjective and that the topology that transfers from onto its image is strictly finer than the subspace topology that induces on this same set.^{ [11]} A distribution is said to be extendible to U if it belongs to the range of the transpose of and it is called extendible if it is extendable to ^{ [11]}
For any distribution the restriction ρ_{VU}(T) is a distribution in defined by:
Unless U = V, the restriction to V is neither injective nor surjective. Lack of surjectivity follows since distributions can blow up towards the boundary of V. For instance, if and then the distribution
is in but admits no extension to
Gluing and distributions that vanish in a set
Theorem^{ [30]} — Let be a collection of open subsets of For each let and suppose that for all the restriction of to is equal to the restriction of to (note that both restrictions are elements of ). Then there exists a unique such that for all the restriction of T to is equal to
Let V be an open subset of U. is said to vanish in V if for all such that we have T vanishes in V if and only if the restriction of T to V is equal to 0, or equivalently, if and only if T lies in the kernel of the restriction map ρ_{VU}.
 Corollary.^{ [30]} Let be a collection of open subsets of and let T = 0 if and only if for each the restriction of T to is equal to 0.
 Corollary.^{ [30]} The union of all open subsets of U in which a distribution T vanishes is an open subset of U in which T vanishes.
Support of a distribution
This last corollary implies that for every distribution T on U, there exists a unique largest subset V of U such that T vanishes in V (and does not vanish in any open subset of U that is not contained in V); the complement in U of this unique largest open subset is called the support of T.^{ [30]} Thus
If is a locally integrable function on U and if is its associated distribution, then the support of is the smallest closed subset of U in the complement of which is almost everywhere equal to 0.^{ [30]} If is continuous, then the support of is equal to the closure of the set of points in U at which does not vanish.^{ [30]} The support of the distribution associated with the Dirac measure at a point is the set ^{ [30]} If the support of a test function does not intersect the support of a distribution T then Tf = 0. A distribution T is 0 if and only if its support is empty. If is identically 1 on some open set containing the support of a distribution T then fT = T. If the support of a distribution T is compact then it has finite order and furthermore, there is a constant C and a nonnegative integer N such that:^{ [6]}
If T has compact support then it has a unique extension to a continuous linear functional on ; this functional can be defined by where is any function that is identically 1 on an open set containing the support of T.^{ [6]}
If and then and Thus, distributions with support in a given subset form a vector subspace of ; such a subspace is weakly closed in if and only if A is closed in U.^{ [31]} Furthermore, if is a differential operator in U, then for all distributions T on U and all we have and ^{ [31]}
Distributions with compact support
 Support in a point set and Dirac measures
For any let denote the distribution induced by the Dirac measure at x. For any and distribution the support of T is contained in if and only if T is a finite linear combination of derivatives of the Dirac measure at ^{ [32]} If in addition the order of T is then there exist constants such that:^{ [33]}
Said differently, if T has support at a single point then T is in fact a finite linear combination of distributional derivatives of the δ function at P. That is, there exists an integer m and complex constants a_{α} such that
where is the translation operator.
 Distribution with compact support
Theorem^{ [6]} — Suppose T is a distribution on U with compact support K. There exists a continuous function defined on U and a multiindex p such that
where the derivatives are understood in the sense of distributions. That is, for all test functions on U,
 Distributions of finite order with support in an open subset
Theorem^{ [6]} — Suppose T is a distribution on U with compact support K and let V be an open subset of U containing K. Since every distribution with compact support has finite order, take N to be the order of T and define There exists a family of continuous functions defined on U with support in V such that
where the derivatives are understood in the sense of distributions. That is, for all test functions on U,
Global structure of distributions
The formal definition of distributions exhibits them as a subspace of a very large space, namely the topological dual of (or the Schwartz space for tempered distributions). It is not immediately clear from the definition how exotic a distribution might be. To answer this question, it is instructive to see distributions built up from a smaller space, namely the space of continuous functions. Roughly, any distribution is locally a (multiple) derivative of a continuous function. A precise version of this result, given below, holds for distributions of compact support, tempered distributions, and general distributions. Generally speaking, no proper subset of the space of distributions contains all continuous functions and is closed under differentiation. This says that distributions are not particularly exotic objects; they are only as complicated as necessary.
 Distributions as sheafs
Theorem^{ [34]} — Let T be a distribution on U. There exists a sequence in such that each T_{i} has compact support and every compact subset intersects the support of only finitely many T_{i}, and the sequence of partial sums defined by converges in to T; in other words we have:
Recall that a sequence converges in (with its strong dual topology) if and only if it converges pointwise.
Decomposition of distributions as sums of derivatives of continuous functions
By combining the above results, one may express any distribution on U as the sum of a series of distributions with compact support, where each of these distributions can in turn be written as a finite sum of distributional derivatives of continuous functions on U. In other words for arbitrary we can write:
where are finite sets of multiindices and the functions are continuous.
Theorem^{ [35]} — Let T be a distribution on U. For every multiindex p there exists a continuous function g_{p} on U such that
 any compact subset K of U intersects the support of only finitely many g_{p}, and
Moreover, if T has finite order, then one can choose g_{p} in such a way that only finitely many of them are nonzero.
Note that the infinite sum above is welldefined as a distribution. The value of T for a given can be computed using the finitely many g_{α} that intersect the support of
Operations on distributions
Many operations which are defined on smooth functions with compact support can also be defined for distributions. In general, if is a linear map which is continuous with respect to the weak topology, then it is possible to extend A to a map by passing to the limit.^{ [note 16]}^{[ citation needed]}^{[ clarification needed]}
Preliminaries: Transpose of a linear operator
Operations on distributions and spaces of distributions are often defined by means of the transpose of a linear operator because it provides a unified approach that the many definitions in the theory of distributions and because of its many wellknown topological properties.^{ [36]} In general the transpose of a continuous linear map is the linear map defined by or equivalently, it is the unique map satisfying for all and all Since A is continuous, the transpose is also continuous when both duals are endowed with their respective strong dual topologies; it is also continuous when both duals are endowed with their respective weak* topologies (see the articles polar topology and dual system for more details).
In the context of distributions, the characterization of the transpose can be refined slightly. Let be a continuous linear map. Then by definition, the transpose of A is the unique linear operator that satisfies:
 for all and all
However, since the image of is dense in it is sufficient that the above equality hold for all distributions of the form where Explicitly, this means that the above condition holds if and only if the condition below holds:
 for all
Differential operators
Differentiation of distributions
Let is the partial derivative operator In order to extend we compute its transpose:
Therefore Therefore the partial derivative of with respect to the coordinate is defined by the formula
With this definition, every distribution is infinitely differentiable, and the derivative in the direction is a linear operator on
More generally, if is an arbitrary multiindex, then the partial derivative of the distribution is defined by
Differentiation of distributions is a continuous operator on this is an important and desirable property that is not shared by most other notions of differentiation.
If T is a distribution in then
where is the derivative of T and τ_{x} is translation by x; thus the derivative of T may be viewed as a limit of quotients.^{ [37]}
Differential operators acting on smooth functions
A linear differential operator in U with smooth coefficients acts on the space of smooth functions on Given we would like to define a continuous linear map, that extends the action of on to distributions on In other words we would like to define such that the following diagram commutes:
Where the vertical maps are given by assigning its canonical distribution which is defined by: for all With this notation the diagram commuting is equivalent to:
In order to find we consider the transpose of the continuous induced map defined by As discussed above, for any the transpose may be calculated by:
For the last line we used integration by parts combined with the fact that and therefore all the functions have compact support.^{ [note 17]} Continuing the calculation above we have for all
Define the formal transpose of which will be denoted by to avoid confusion with the transpose map, to be the following differential operator on U:
The computations above have shown that:
 Lemma. Let be a linear differential operator with smooth coefficients in Then for all we have
 which is equivalent to:
The Lemma combined with the fact that the formal transpose of the formal transpose is the original differential operator, i.e. ^{ [8]} enables us to arrive at the correct definition: the formal transpose induces the (continuous) canonical linear operator defined by We claim that the transpose of this map, can be taken as To see this, for every , compute its action on a distribution of the form with :
We call the continuous linear operator the differential operator on distributions extending P.^{ [8]} Its action on an arbitrary distribution is defined via:
If converges to then for every multiindex converges to
Multiplication of distributions by smooth functions
A differential operator of order 0 is just multiplication by a smooth function. And conversely, if is a smooth function then is a differential operator of order 0, whose formal transpose is itself (i.e. ). The induced differential operator maps a distribution T to a distribution denoted by We have thus defined the multiplication of a distribution by a smooth function.
We now give an alternative presentation of multiplication by a smooth function. If is a smooth function and T is a distribution on U, then the product mT is defined by
This definition coincides with the transpose definition since if is the operator of multiplication by the function m (i.e., ), then
so that
Under multiplication by smooth functions, is a module over the ring With this definition of multiplication by a smooth function, the ordinary product rule of calculus remains valid. However, a number of unusual identities also arise. For example, if δ′ is the Dirac delta distribution on , then mδ = m(0)δ, and if δ′ is the derivative of the delta distribution, then
The bilinear multiplication map given by is not continuous; it is however, hypocontinuous.^{ [14]}
Example. For any distribution T, the product of T with the function that is identically 1 on U is equal to T.
Example. Suppose is a sequence of test functions on U that converges to the constant function For any distribution T on U, the sequence converges to ^{ [38]}
If converges to and converges to then converges to
Problem of multiplying distributions
It is easy to define the product of a distribution with a smooth function, or more generally the product of two distributions whose singular supports are disjoint. With more effort it is possible to define a wellbehaved product of several distributions provided their wave front sets at each point are compatible. A limitation of the theory of distributions (and hyperfunctions) is that there is no associative product of two distributions extending the product of a distribution by a smooth function, as has been proved by Laurent Schwartz in the 1950s. For example, if p.v.